教學大綱 Syllabus

科目名稱:生成式人工智慧

Course Name: Generative AI

修別:選

Type of Credit: Elective

3.0

學分數

Credit(s)

30

預收人數

Number of Students

課程資料Course Details

課程簡介Course Description

  • Introduction to Generative AI
  • Large Language Models (LLMs)
  • Text-to-image & text-to-video generation
  • Bridging text and audio

核心能力分析圖 Core Competence Analysis Chart

能力項目說明


    課程目標與學習成效Course Objectives & Learning Outcomes

    • Equip students with practical knowledge of Generative AI, focusing on text and multimedia generation technologies.

    每周課程進度與作業要求 Course Schedule & Requirements

    • Week1 (9/5): Chap1 Introduction to Generative AI and Overview of Large Language Models (1/2)
    • Week2 (9/12): Chap1 Introduction to Generative AI and Overview of Large Language Models (2/2) 
    • Week3 (9/19): 1st Term project presentation, Chap2 Transformer Architecture and Self-Attention Mechanism (1/2)
    • Week4 (9/26): 助教第一次實驗(Assignment 1, 2) (記得帶筆電,課前下載實驗檔案) [自主學習三小時]
    • Week5 (10/3): Class quiz#1, Chap2 Transformer Architecture and Self-Attention Mechanism (2/2)
    • Week6 (10/10): 國慶日放假
    • Week7 (10/17): Chap3 Evolution of Large Language Models: Self-Supervised Learning and Pre-training (1/2)
    • Week8 (10/24): 光復紀念日補假
    • Week9 (10/31): 繳交實驗(Assignment 1), 助教第二次實驗(Assignment 3) (此為加分題bonus), (記得帶筆電,課前下載實驗檔案) [自主學習三小時], Chap3 Evolution of Large Language Models: Self-Supervised Learning and Pre-training (2/2)
    • Week10 (11/7): Chap4 Evolution of Large Language Models: Supervised Fine-tuning and Reinforcement Learning (1/2)
    • Week11 (11/14): Class quiz#2, Chap4 Evolution of Large Language Models: Supervised Fine-tuning and Reinforcement Learning (2/2)
    • Week12 (11/21): Chap5 Prompt Engineering - Optimizing User Inputs (1/2)
    • Week13 (11/28): Chap5 Prompt Engineering - Optimizing User Inputs (2/2)
    • Week14 (12/5): 繳交實驗(Assignment 2), Chap6 Principles of Image and Video Generation (1/2)
    • Week15 (12/12): Class quiz#3, Chap6 Principles of Image and Video Generation (2/2)
    • Week16 (12/19): 繳交實驗(Assignment 3) (此為加分題bonus), 2nd Term project presentation

    附註: 

    課程內容與指定閱讀:上課投影片
    教學活動與作業:[Week 1-16] 老師授課、助教實習及測驗含線上教材自主學習
    學習投入時數(含課堂及課程前後):3小時 (4.5小時)

    授課方式Teaching Approach

    50%

    講述 Lecture

    0%

    討論 Discussion

    0%

    小組活動 Group activity

    0%

    數位學習 E-learning

    50%

    其他: Others: TA labs (10%) Term projects (40%)

    評量工具與策略、評分標準成效Evaluation Criteria

    • Class quizzes: 30%
    • Labs: Mandatory (Lab#1, 2) 20%, Bonus (Lab#3) 10%
    • Term project: 50%

    指定/參考書目Textbook & References

    Textbook

    • Akshay Kulkarni, Adarsha Shivananda, Anoosh Kulkarni, Dilip Gudivada, "Applied Generative AI for Beginners: Practical Knowledge on Diffusion Models, ChatGPT, and Other LLMs," Apress, 2023.
    • Martin Musiol, "Generative AI: Navigating the Course to the Artificial General Intelligence Future," Wiley, 2024.
    • Shivam R Solanki and Drupad K Khublani, "Generative Artificial Intelligence - Exploring the Power and Potential of Generative AI," Apress, 2024.

    References

    • Valentina Alto, "Modern Generative AI with ChatGPT and OpenAI Models: Leverage the capabilities of OpenAI's LLM for productivity and innovation with GPT3 and GPT4," Packt Publishing, 2023.
    • Ben Auffarth, “Generative AI with LangChain: Build large language model (LLM) apps with Python, ChatGPT, and other LLMs,” Packt Publishing, 2023.
    • Ken Huang, Yang Wang, Feng Zhu, Xi Chen, Chunxiao Xing, "Beyond AI: ChatGPT, Web3, and the Business Landscape of Tomorrow, Springer, 2023.
    • Tom Taulli, "Generative AI: How ChatGPT and other AI Tools will Revolutionize Business," Apress, 2023.

    已申請之圖書館指定參考書目 圖書館指定參考書查詢 |相關處理要點

    維護智慧財產權,務必使用正版書籍。 Respect Copyright.

    本課程可否使用生成式AI工具Course Policies on the Use of Generative AI Tools

    完全開放使用 Completely Permitted to Use

    課程相關連結Course Related Links

    N/A

    課程附件Course Attachments

    課程進行中,使用智慧型手機、平板等隨身設備 To Use Smart Devices During the Class

    Yes

    列印