教學大綱 Syllabus

科目名稱:高等微積分

Course Name: Advanced Calculus

修別:必

Type of Credit: Required

4.0

學分數

Credit(s)

90

預收人數

Number of Students

課程資料Course Details

課程簡介Course Description

此課程為數學系與應用數學系的專業基礎的課程, 也是數學系最重要學科之一, 目標在教導學生基本的數學分析與數理邏輯,推導微積分重要且基本的性質, 使學生了解並學會數學分析與更深的了解微積分的原理與嚴謹證明和計算。

核心能力分析圖 Core Competence Analysis Chart

能力項目說明


    課程目標與學習成效Course Objectives & Learning Outcomes

     

     

             評量工具

         評量指標

    隨堂考

    期中考

    期末考

    其他

    試題難易

    評鑑尺規

    具備基礎數學與

    邏輯推理之能力

     

     

     

     

     

     

    建立數學模型,

    解決問題之能力

     

     

     

     

     

    深度閱讀與分析數據之基礎能力

     

     

     

     

     

     

     

    具備具備團隊合作 

    與科學計算之能力

     

     

     

     

     

     

     

     

     

     

    每周課程進度與作業要求 Course Schedule & Requirements

    週次

    課程主題

    課程內容與指定閱讀

    教學活動與作業

    1

    1.2-1.11

    The field, order axioms and geometric representation of real numbers, The intervals, integers, rational numbers, irrational numbers and upper bounds, maximum element least upper bound and the completeness axioms

    第一章習題演練與講解;學習評量測驗

    2

    1.12-1.20

    Properties of the integers deduced from the completeness axiom. The Archimedean property of the real number system. Rationalnumbers with finite decimal representation. Finite decimal approximations to rea numbers. Infinite decimal representation of real numbers. Absolute values and the triangle inequality. The Cauchy-Schwarz inequality. Plus and minus infinity and the extended real number system. Complex numbers.

    第一章習題演練與講解;學習評量測驗

    3

    1.22-1.22

    The imaginary unit. Absolute value of a complex number. Imposibility of ordering the complex numbers. Complex exponentials.  The argument of a complex number. Integral powers and roots of complex numbers. Complex logarithms. Complex powers. Complex sines and cosines. Infinity and the extended complexplane.

     

    第一章習題演練與講解;學習評量測驗第一第一章習題演練與講解;學習評量測驗

    4

    2.2-2.15

    Cartesian product of two sets.  One-to-one functions and inverses . Composite functions.  Finite and infinite sets. Countable and uncountable sets. Uncountability of the real-number system. Set algebra . Countable collections of countable sets

    第二章習題演練與講解;學習評量測驗

    5

    3.2-3.11

    Euclidean space R^n. Open balls and open sets in R^n . The structure of open sets in R^1. Closed sets. Adherent points. A cumulation points. Closed sets and adherent points. The Bolzano-Weierstrass theorem. The Cantor intersection theorem. The Lindelof covering theorem. The Heine-Borel covering theorem. . Compactness in R^n.

    第三章習題演練與講解;學習評量測驗

    6

    3.12-3.16

    Metric spaces. Point set topology in metric spaces. Compact subsets of a metric space. .Boundary of a set

    第三章習題演練與講解;學習評量測驗

    7

    4.1-4.6

    Convergent sequences in a metric space. Cauchy sequences. Complete metric spaces. Limit to a function. Limits of complex-valued functions.

    第四章習題演練與講解;學習評量測驗

    8

    期中考

    Chapter 1 and Chapter 2, Chapter 3, Chapther 4.1-4.6

     

    9

    4.7-4.12

    Limits of vector-valued functions. Continuous functions. Continuity of composite functions. Continuous complex-valued and vector-valued functions. Examples of continuous functions . Continuity and inverse images of open or closed sets.

    第四章習題演練與講解;學習評量測驗

    10

    4.13-4.23

    Functions continuous on compact sets. Topological mappings. Bolzano's theorem. Conectedness. Components of a metric space. Arcwise connectedness, Uniform continuity and  compactsets . Fixed-point theorem for contractions. Discontinuities of real-valued functions. Monotonic functions.

    第四章習題演練與講解;學習評量測驗

    11

    5.1-5.7

    Definition of derivative. Derivatives and continuity. Algebra of derivatives. The chain rule. One-side derivatives and infinite derivatives. Functions with nonzero derivative.

    第五章習題演練與講解;學習評量測驗

    12

    5.8-5.12

    The Mean-Value Theorem for derivatives.Intermediate-value theorem for derivatives. Taylor's formula with remainder. Derivatives of vector-valued functions

    第五章習題演練與講解;學習評量測驗

    13

    5.13-5.16

    Partial derivatives. Diferentiation of functions of a complex variable. The Cauchy-Riemann equations

    第五章習題演練與講解;學習評量測驗

    14

    6.2-6.8

    Propositions of bounded variation, total variation, functions of bounded variation, continuous functions of bounded variation

    第六章習題演練與講解;學習評量測驗

    15

    7.2—7.8

    The definition of the Riemann-Stieltjes integral, Integration by parts, Change of variable, Reduction to a Riemann-Stieltjes integral

    第七章習題演練與講解;學習評量測驗

    16

    期末考

    Chapter 4-Chapter 7

     

     

     

    學習投入時數 8/週

     

     

    授課方式Teaching Approach

    85%

    講述 Lecture

    15%

    討論 Discussion

    0%

    小組活動 Group activity

    0%

    數位學習 E-learning

    0%

    其他: Others:

    評量工具與策略、評分標準成效Evaluation Criteria

     

     

     

     

    平時考

    (25-30%)

    期中考(30%)

    期末考(40%)

    研習課

    (3-5%)

    其他

    (2-4%)

    A

    ()

    基本上完整解出試題

    成績90分以上

    成績90分以上

    每次都準時上下課

    期末考成績比期中考成績多30分以上,或是課堂上提出有建設性的好問題

    B

    (佳)

    雖未解出試題,但解題觀念正確

    成績70-89分之間

    成績70-89分之間

    有1-3次缺席或是不準時上下課

    期末考成績比期中考成績多20-30分,上課態度良好。

    C

    (普通

    未解出問題且解題觀念錯誤

    成績50-69分之間

    成績50-69分之間

    常常缺席或不準時上下課

    期末考成績比期中考成績多10-20分。

    (待改進

    未來上課且未解出試題

    成績50分下

    成績50分下

    未上課

    無!

    平時考都在演習課(星期三)18:00-20:00 考。

     

     

     

     

     

     

     

     

     

     

     

    課程要求:上課時嚴禁學生聊天或講電話

    評分標準:

    1. 每次上課都有小考(第一次上課與期中考後第一次上課除外)佔學期總成績之百分之三十。

    2. 期中考佔學期成績百分之三十。

    3. 期末考佔學期成績百分之四十。

    4. 實習課成績(出席率)佔學期成績百分之三~五。

    5. 若期末考成績比期中考成績多許多,或是課堂上提出有建設性的好問題,額外加分,以鼓勵之。  

    考試範圍為上課所教授的內容與課本習題。

    本課程無涉及 AI 使用。

    指定/參考書目Textbook & References

    教科書:

    Tom Apostol, mathematical Analysis, 2ed  

    參考書:

    Walter Rudin, Principle of Mathematical Analysis, 3rd

     

     

     

    已申請之圖書館指定參考書目 圖書館指定參考書查詢 |相關處理要點

    維護智慧財產權,務必使用正版書籍。 Respect Copyright.

    本課程可否使用生成式AI工具Course Policies on the Use of Generative AI Tools

    本課程無涉及AI使用 This Course Does Not Involve the Use of AI.

    課程相關連結Course Related Links

    
                

    課程附件Course Attachments

    課程進行中,使用智慧型手機、平板等隨身設備 To Use Smart Devices During the Class

    No

    列印