Type of Credit: Required
Credit(s)
Number of Students
此課程為數學系與應用數學系的專業基礎的課程, 也是數學系最重要學科之一, 目標在教導學生基本的數學分析與數理邏輯,推導微積分重要且基本的性質, 使學生了解並學會數學分析與更深的了解微積分的原理與嚴謹證明和計算。
能力項目說明
|
評量工具 |
評量指標 |
||||
隨堂考 |
期中考 |
期末考 |
其他 |
試題難易 |
評鑑尺規 |
|
具備基礎數學與 邏輯推理之能力 |
※ |
※
|
※
|
|
※
|
※
|
具建立數學模型, 解決問題之能力 |
※ |
※
|
※
|
※
|
※
|
※
|
具深度閱讀與分析數據之基礎能力 |
※ |
※
|
※
|
※
|
※
|
※
|
具備具備團隊合作
與科學計算之能力 |
|
|
|
※
|
※
|
※
|
週次 |
課程主題 |
課程內容與指定閱讀 |
教學活動與作業 |
1 |
1.2-1.11 |
The field, order axioms and geometric representation of real numbers, The intervals, integers, rational numbers, irrational numbers and upper bounds, maximum element least upper bound and the completeness axioms |
第一章習題演練與講解;學習評量測驗
|
2 |
1.12-1.20 |
Properties of the integers deduced from the completeness axiom. The Archimedean property of the real number system. Rationalnumbers with finite decimal representation. Finite decimal approximations to rea numbers. Infinite decimal representation of real numbers. Absolute values and the triangle inequality. The Cauchy-Schwarz inequality. Plus and minus infinity and the extended real number system. Complex numbers. |
第一章習題演練與講解;學習評量測驗 |
3 |
1.22-1.22 |
The imaginary unit. Absolute value of a complex number. Imposibility of ordering the complex numbers. Complex exponentials. The argument of a complex number. Integral powers and roots of complex numbers. Complex logarithms. Complex powers. Complex sines and cosines. Infinity and the extended complexplane.
|
第一章習題演練與講解;學習評量測驗第一第一章習題演練與講解;學習評量測驗 |
4 |
2.2-2.15 |
Cartesian product of two sets. One-to-one functions and inverses . Composite functions. Finite and infinite sets. Countable and uncountable sets. Uncountability of the real-number system. Set algebra . Countable collections of countable sets |
第二章習題演練與講解;學習評量測驗 |
5 |
3.2-3.11 |
Euclidean space R^n. Open balls and open sets in R^n . The structure of open sets in R^1. Closed sets. Adherent points. A cumulation points. Closed sets and adherent points. The Bolzano-Weierstrass theorem. The Cantor intersection theorem. The Lindelof covering theorem. The Heine-Borel covering theorem. . Compactness in R^n. |
第三章習題演練與講解;學習評量測驗 |
6 |
3.12-3.16 |
Metric spaces. Point set topology in metric spaces. Compact subsets of a metric space. .Boundary of a set |
第三章習題演練與講解;學習評量測驗 |
7 |
4.1-4.6 |
Convergent sequences in a metric space. Cauchy sequences. Complete metric spaces. Limit to a function. Limits of complex-valued functions. |
第四章習題演練與講解;學習評量測驗 |
8 |
期中考 |
Chapter 1 and Chapter 2, Chapter 3, Chapther 4.1-4.6 |
|
9 |
4.7-4.12 |
Limits of vector-valued functions. Continuous functions. Continuity of composite functions. Continuous complex-valued and vector-valued functions. Examples of continuous functions . Continuity and inverse images of open or closed sets. |
第四章習題演練與講解;學習評量測驗 |
10 |
4.13-4.23 |
Functions continuous on compact sets. Topological mappings. Bolzano's theorem. Conectedness. Components of a metric space. Arcwise connectedness, Uniform continuity and compactsets . Fixed-point theorem for contractions. Discontinuities of real-valued functions. Monotonic functions. |
第四章習題演練與講解;學習評量測驗 |
11 |
5.1-5.7 |
Definition of derivative. Derivatives and continuity. Algebra of derivatives. The chain rule. One-side derivatives and infinite derivatives. Functions with nonzero derivative. |
第五章習題演練與講解;學習評量測驗 |
12 |
5.8-5.12 |
The Mean-Value Theorem for derivatives.Intermediate-value theorem for derivatives. Taylor's formula with remainder. Derivatives of vector-valued functions |
第五章習題演練與講解;學習評量測驗 |
13 |
5.13-5.16 |
Partial derivatives. Diferentiation of functions of a complex variable. The Cauchy-Riemann equations |
第五章習題演練與講解;學習評量測驗 |
14 |
6.2-6.8 |
Propositions of bounded variation, total variation, functions of bounded variation, continuous functions of bounded variation |
第六章習題演練與講解;學習評量測驗 |
15 |
7.2—7.8 |
The definition of the Riemann-Stieltjes integral, Integration by parts, Change of variable, Reduction to a Riemann-Stieltjes integral |
第七章習題演練與講解;學習評量測驗 |
16 |
期末考 |
Chapter 4-Chapter 7 |
|
|
學習投入時數 8/週
|
||||||||||||||||||||||||||||||||||||||||
|
|
|
課程要求:上課時嚴禁學生聊天或講電話。
評分標準:
1. 每次上課都有小考(第一次上課與期中考後第一次上課除外)佔學期總成績之百分之三十。
2. 期中考佔學期成績百分之三十。
3. 期末考佔學期成績百分之四十。
4. 實習課成績(出席率)佔學期成績百分之三~五。
5. 若期末考成績比期中考成績多許多,或是課堂上提出有建設性的好問題,額外加分,以鼓勵之。
考試範圍為上課所教授的內容與課本習題。
本課程無涉及 AI 使用。
教科書:
Tom Apostol, mathematical Analysis, 2ed
參考書:
Walter Rudin, Principle of Mathematical Analysis, 3rd