教學大綱 Syllabus

科目名稱:高等數理統計

Course Name: Advanced Mathematical Statistics

修別:必

Type of Credit: Required

3.0

學分數

Credit(s)

40

預收人數

Number of Students

課程資料Course Details

課程簡介Course Description

This course provides students with the principles of probability theory and the theory of statistical inference, such as estimation methods, confidence intervals, and hypothesis testing procedures.

Those topics are essential for graduate students for further development in the field of Statistics or related fields.

核心能力分析圖 Core Competence Analysis Chart

能力項目說明


    課程目標與學習成效Course Objectives & Learning Outcomes

    The students will be able to make theoretical derivations and works on the following topics:

    1. Probability theory

    2. Transformations and expectations, including moments and moment generating functions.

    3. Common families of distributions, including discrete distributions, continuous distributions, exponential families, and location and scale families.

    4. Multivariate random variables and their distributions

    5. Properties of a random sample, including sampling from normal distribution, order statistics, convergence concepts, etc.

    每周課程進度與作業要求 Course Schedule & Requirements

    週次

    課程主題

    課程內容與指定閱讀

    教學活動與作業

    1

    Probability theory

    1.1-1.3

    1.1: 1.1-1.3, 1.9, 1.10, 1.14 ;
    1.2: 1.4-1.8, 1.11- 1.13, 1.15-1.32, 1.42, 1.43;
    1.3: 1.33-1.41, 1.44

    2

    Random variables

    1.4-1.6

    1.4: 1.45, 1.46;

    1.6: 1.47-1.55;
    2.1: 2.1-2.10, 2.11(b), 2.12, 2.13, 2.22(a), 2.23(a) 

    3

    CDF, moments

    2.1-2.2

    2.2: 2.11-2.16, 2.20-2.22, 2.23(b), 2.24 

    HW1(due on Week4)

    4

    MGF, distribution families

    2.3-2.4

    2.3: 2.28-2.38;

    2.4: 2.4: 2.19, 2.39, 2.40

    HW2(due on Week 6)

    5

    Common models

    3.2-3.4

    3.2: 3.1~3.15, 3.18, 3.19, 3.22(a)(b);

    3.3: 3.17~3.21,3.22(c)(d)(e), 3.23-3.27

    6

    Local and scale families, inequalities

    3.4-3.6

    3.4: 3.28-3.35;
    3.5: 3.36-3.43;
    3.6: 3.44-3.50;

    HW3 (due on week 8)

    7

    Bivariate random variables

    4.1

    4.1: 4.1-4.7, 4.9, 4.14-4.16, 4.40(a)(b), 4.49

    8

    Review 

    Ch1-3

    Review

    9

    Midterm

    Ch1-3

     

    10

    Bivariate transformation, hierarchical and mixture models

    4.2-4.4

    4.2: 4.8, 4.10-4.13, 4.15-4.17, 4.40(c), 4.45, 4.48;
    4.3: 4.19-4.29, 4.46, 4.47, 4.51;

    4.4: 4.30-4.38

    11

    Multivariate distributions, covariance matrix

    4.4-4.6

    4.5: 4.40(d), 4.41-4.44, 4.50, 4.58, 4.59; 
    4.6: 4.51-4.56

     

    12

    Inequalities

    4.6-4.7

    4.6: 4.51-4.56 
    4.7: 4.62-4.65

    HW4(due on week 14)

    13

    Random sample and its properties

    5.1-5.2

    5.1:  5.1, 5.2; 
    5.2:  5.3, 5.5-5.12

    14

    Sum of variables, generating a  random sample

    5.2; 5.6

    5.2:  5.3, 5.5-5.12;

    5.6: Exercise 5.45-5.50, 5.56 

    15

    Sampling distribution,  convergence properties

    5.3;5.5

    5.3:  5.12-5.20;

    5.5:  5.29-5.44

    HW5 (due on week 17)

    16

    Order statistics

    5.4

    5.4:  5.21-5.28

    17

    Review

    4-5

    Review

    18

    Final exam

    4-5

     

    授課方式Teaching Approach

    90%

    講述 Lecture

    0%

    討論 Discussion

    0%

    小組活動 Group activity

    10%

    數位學習 E-learning

    0%

    其他: Others:

    評量工具與策略、評分標準成效Evaluation Criteria

    Attendance: 10%

    HW: 25%

    Midterm: 30%

    Final: 35%

    指定/參考書目Textbook & References

    Statistical inference, second edution; George Casella and Roger L. Berger

    已申請之圖書館指定參考書目 圖書館指定參考書查詢 |相關處理要點

    維護智慧財產權,務必使用正版書籍。 Respect Copyright.

    課程相關連結Course Related Links

    
                

    課程附件Course Attachments

    課程進行中,使用智慧型手機、平板等隨身設備 To Use Smart Devices During the Class

    需經教師同意始得使用 Approval

    列印