教學大綱 Syllabus

科目名稱:數據化投資分析

Course Name: Data-driven Investment Analysis

修別:群

Type of Credit: Partially Required

3.0

學分數

Credit(s)

50

預收人數

Number of Students

課程資料Course Details

課程簡介Course Description

This course takes a data-driven approach to making investment decisions. The first part will review financial market basics, essential mathematical tools (linear algebra, constrained optimization), statistical methods (linear regression, simulation), Excel spreadsheets, and Python programming (NumPy, SciPy, and Pandas) for investment analysis.  The second part will introduce the quantitative investment framework: (i) data collection, (ii) input estimation, (iii) portfolio optimization, (iv) back-testing, (v) implementation, and (vi) performance evaluation. Students will learn how to apply financial theories in portfolio choice (MPT) and asset pricing (CAPM). For practical topics, the course will cover topics on the fund industry, passive investment, active portfolio management, factor investing, performance metrics, style analysis, and risk management.

Students should have a good background in mathematics and statistics (e.g. matrix operations, univariate calculus, normal distribution, hypothesis testing). Prior knowledge in programming (e.g. Python, R, Excel VBA, Matlab, etc.) is desirable but not requiredStudents without the aforementioned knowledge should expect a steep learning curve and heavy workload. 

核心能力分析圖 Core Competence Analysis Chart

能力項目說明


    課程目標與學習成效Course Objectives & Learning Outcomes

    1.    To understand the fundamental theories of portfolio choice and asset pricing.
    2.    To apply portfolio management techniques in Excel and Python.
    3.    To acquire practical experience in working with financial data.
    4.    To gain awareness of the limitations of theoretical models in reality.
    5.    To learn about the investment management industry and performance evaluation.
    6.    To gain insights about trends in investment and portfolio management.

    每周課程進度與作業要求 Course Schedule & Requirements

    Week Topic Content and Reading Assignment Teaching Activities and Homework
    1. (4-Sep-2025) Overview of the course Lecture notes Class 1
    2. (11-Sep-2025) Review of statistical and optimization techniques Lecture notes Class 2
    3. (18-Sep-2025) Financial market and security trading BKM Chapters 1, 2, 3 Class 3
    4. (26-Sep-2025) Market data BKM Chapter 5 Class 4
    5. (2-Oct-2025) Capital allocation to risky assets BKM Chapter 6 Class 5
    6. (9-Oct-2025) Portfolio choices BKM Chapters 6, 7 Class 6
    7. (16-Oct-2025) Applications of modern portfolio theory BKM Chapters 7, 8 Class 7
    8. (23-Oct-2025) Midterm examination    
    9. (30-Oct-2025) The capital asset pricing model BKM Chapter 9 Class 8
    10. (6-Nov-2025) Arbitrage pricing theory BKM Chapter 10 Class 9
    11. (13-Nov-2025) Applications of asset pricing models BKM Chapters 8, 9, 10 Class 10
    12. (20-Nov-2025) Performance evaluation BKM Chapter 24 Class 11
    13. (27-Nov-2025) Investment companies BKM Chapters 4, 26 Class 12
    14. (4-Dec-2025) Project on investment strategies Group discussion and presentations Class 13
    15. (11-Dec-2025) Project on investment strategies Group discussion and presentations Class 14
    16. (18-Dec-2025) Final examination    

    授課方式Teaching Approach

    50%

    講述 Lecture

    10%

    討論 Discussion

    20%

    小組活動 Group activity

    20%

    數位學習 E-learning

    0%

    其他: Others:

    評量工具與策略、評分標準成效Evaluation Criteria

    5 Homework Assignment - 25%

    1 Group Project - 25%

    1 Midterm Examination - 25%

    1 Final Examination - 25%

    指定/參考書目Textbook & References

    Investments, 11th Edition by Zvi Bodie, Alex Kane, and Alan Marcus, McGraw-Hill, 2019. (BKM)

    已申請之圖書館指定參考書目 圖書館指定參考書查詢 |相關處理要點

    維護智慧財產權,務必使用正版書籍。 Respect Copyright.

    本課程可否使用生成式AI工具Course Policies on the Use of Generative AI Tools

    有條件開放使用:Use AI co-pilot to assist coding Conditional Permitted to Use

    課程相關連結Course Related Links

    
                

    課程附件Course Attachments

    課程進行中,使用智慧型手機、平板等隨身設備 To Use Smart Devices During the Class

    其他:Bring your laptop for excel or lab sessions Other regulation

    列印