教學大綱 Syllabus

科目名稱:經驗政治理論與方法

Course Name: Empirical Political Theory and Methodology

修別:群

Type of Credit: Partially Required

3.0

學分數

Credit(s)

3

預收人數

Number of Students

課程資料Course Details

課程簡介Course Description

Empirical Political Theory and Methodology is a PhD-level seminar offered in English. It aims at covering fundamental principles of empirical political studies, including theory building and empirical-implication derivations, research designs, measurement, hypothesis testing, and inference.

Students enrolled in this class must have completed master-level Social Statistics I and II classes. I assume you are already familiar with MS Excel, SPSS (Statistical Package for the Social Science) 21/22, and freeware R 4.x http://cran.csie.ntu.edu.tw/.  (You may download free interface Rstudio from https://www.rstudio.com/products/rstudio/download/ ) as well as Stata 18 or higher.

Reauired tools: notebook computerPython with packages & inferfaceR software with packagesRStudio interfaceStata

核心能力分析圖 Core Competence Analysis Chart

能力項目說明


    課程目標與學習成效Course Objectives & Learning Outcomes

    By the end of the semester, you are expected to understand the principles of empirical political studies and be able to apply them to your own research. 

    每周課程進度與作業要求 Course Schedule & Requirements

    On average you should devote 10 hours each week to this class.

     

    Political Science And Methodology In Perspective

     

     Integration of Theory and Empirics

     

    Week 1            Ashworth et al. 2021. Chapters 1~3.

    Granato, Lo and Wong, 2021 “The EITM Framework.” Chapter 3 in EITM in Political Science.

    Box-Steffensmeier, Janet, Henry E. Brady, and David Collier. 2008. “Political Science Methodology.” Pp. 3-31 in The Oxford Handbook of Political Methodology ed. Janet Box-Steffensmeier, Henry E. Brady, and David Collier. Oxford: Oxford University Press.

    Recommended readings:

         Granato, Jim and Frank Scioli. 2004. “Puzzles, Proverbs, and Omega Matrices: The Scientific and Social Significance of Empirical Implications of Theoretical Models (EITM).” Perspectives on Politics 2(2): 313-323.

     

    Homework: find the latest issue of the following journals, print table of contents, read abstract of each article and then classify each article according to its subfield and methodology

     

     American Political Science Review (APSR)

    Political Analysis (annual from 1989 to 1998; quarterly since volume 8, winter 2000). Homepage of the Society for Political Methodology and the Political Methodology Section of the APSA:

     

     

    I.     The Structuring of Empirical Inquiry

     

    1. General Research Design (I): Units of Observation & Levels of Analysis

    Week 2-3    黃紀,2023,〈第2  調查研究設計〉,載於《民意調查》(read pp. 31-46)

    黃紀,2001,〈一致與分裂投票:方法論之探討〉,《人文及社會科學集刊》,

    13(5): 541-574

    Robinson, W. S. 1950. “Ecological Correlations and the Behavior of Individuals.” American Sociological Review 15(3): 351-357.

    King, Gary, Ori Rosen, and Martin A. Tanner. 2004. “Information in Ecological Inference: An Introduction.” Pp. 1-12 in their Ecological Inference: New Methodological Strategies. Cambridge: Cambridge University Press.

    King, Gary, and Molly Roberts. 2016. “R Package ‘ei’ User’s Manual.”

    Tam Cho, Wendy K., and Charles F. Manski. 2008. “Cross-Level/Ecological Inference.” In The Oxford Handbook of Political Methodology. Pp. 547-569.

     

    Applications:

    黃紀、吳重禮,2003,〈政治分析與研究方法:論2002年立法院行使考試院正副院長同意權之投票模式〉,《問題與研究》,42(1): 1-17

    黃紀、周應龍,2013,〈2012年總統與立委併選的一致與分裂投票〉,載於 陳陸輝 主編《2012年總統與立委選舉:變遷與延續》,台北:五南圖書出版公司,第4章,

    Recommended readings:

    King, Gary. 1997. A Solution to the Ecological Inference Problem: Reconstructing Individual Behavior from Aggregate Data. Princeton: Princeton University Press.

    Plescia, Carolina. 2016. Split-Ticket Voting in Mixed-Member Electoral Systems: A Theoretical and Methodological Investigation. UK: ECPR Press.

     

    1. General Research Design (II): Time Dimension

    Week 4 黃紀,2023,〈第2  調查研究設計〉(read pp. 47-62)

    Huang, Chi. 2019. “Generation Effects? Evolution of Independence-Unification Views in Taiwan, 1996-2016.” Electoral Studies 58: 103-112.

    Wang, T.Y. and Chi Huang. 2024. “China Threat and the Changing Identity in Taiwan.” Asian Survey 64(3): 428–451.

    Applications:

    Hill, Martha S. 1992. The Panel Study of Income Dynamics (PSID): A User’s Guide. Newbury Park: Sage. Pp. 1-11.

    Panel Survey Data Archive: e.g. 黃紀、張卿卿,2023,「台灣政經傳播研究:政治極化之定群追蹤調查(TIGCR-PPS 2018-2022)」,國立政治大學台灣政經傳播研究中心,DOI: 10.6923/TW-TIGCR-PPS-PANEL。

     

    Recommended readings:

    黃紀,2005,〈投票穩定與變遷之分析方法:定群類別資料之馬可夫鍊模型〉,《選舉研究》12(1): 1-37

     

    II.    Spatial Theory, Empirical Models and Measurement

     

    Week 5   Building Theories: A Spatial (Geometric) Perspective

     

                    Downs. 1957. An Economic Theory of Democracy.

     

    Riker, William H. and Peter C. Ordeshook. 1968 “A Theory of the Calculus of Voting.” APSR 62(1): 25-42.

     

    Hinich and Munger. 1997. Analytical Politics. Chapters 1-5.

     

    Ashworth et al. 2021. Chapter 4.

     

    Recommended readings:

    謝復生,2013

     

    Enelow, James M. And Melvin J. Hinich. 1984. The Spatial Theor of Voting: An Introduction. Cambridge: Cambridge University Press.

     

    Congleton, Robert D. 2019. "Rational Choice and Politics." In The Oxford Handbook of Public Choice. Vol. 1, eds. Roger D. Congleton, Bernard Grofman and Stefan Voigt. Oxford: Oxford University Press. Chapter 1.

     

    Empirical Spatial Models

     

    Week 6       Measuring the Electorate’s Ideal Points with Issue Scales: Classical Test Theory (CTT)

     

    劉長萱,2015,〈古典測量理論〉,載 瞿海源 等,第10章。

     

    Jackman, Simon. 2008. “Measurement.” in The Oxford Handbook of Political Methodology. (Read pp. 119-135)

     

    Armstrong, et al. 2021. Chapters 1 & 2.

     

    Week 7       Measuring Ideal Points with Categorical Data: An Introduction to Item Response Theory (IRT)

     

    王文中,2015,〈試題反應理論〉,載 瞿海源 等,第11章。

     

    Jackman, Simon. 2008. “Measurement.” (Read pp. 135-139).

     

    Thissen, David. 2015. "Psychometrics: Item Response Theory." In International Encyclopedia of the Social & Behavioral Sciences (Second Edition), ed. James D. Wright. Oxford: Elsevier, pp. 436-9.

     

    Recommended readings:

    Huang, Chi, Hung-chung Wang, and Chang-chih Lin. 2013. “Knowledge of the Electoral System and Voting: Taiwan’s 2008 and 2012 Legislative Elections.” Issues & Studies 49(4): 1-45.

    Huang, Chi, Tzu-ching Kuo, Yu-heng Jung. 2021. “Public Policy Preferences Revealed in Referendum Voting: The Case of Taiwan.” In Taiwan: Environmental, Political and Social Issues, ed. Cal Clark, Alex Tan, and Karl Ho. NY: Nova Science.

     

    Week 8   Measuring Elites’ Ideal Points with Observed Choices

     

    Poole, Keith T., and Howard Rosenthal. 1985. "A Spatial Model for Legislative Roll Call Analysis." American Journal of Political Science 29(2): 357-84.

     

    Hare, Christopher, and Keith T. Poole. 2019. "Estimates of the Spatial Voting Model." In The Oxford Handbook of Public Choice. Vol. 2, eds. Roger D. Congleton, Bernard Grofman and Stefan Voigt. Oxford: Oxford University Press. Chapter 40 (Read pp. 819-27).

     

    Everson, Phil, Rick Valelly, Arjun Vishwanath, and Jim Wiseman. 2016. "NOMINATE and American Political Development: A Primer." Studies in American Political Development 30(2): 97-115.

    Chiou, Fang-Yi, and Jonathan Klingler. 2023. "Rule Significance and Interbranch Competition in Rulemaking Processes." American Political Science Review 117(4): 1506-1521.

    Armstrong, et al. 2021.  Sections 5.1-5.3 & Section 6.4.

     

    Recommended readings:

    Clinton, Joshua, Simon Jackman, and Douglas Rivers. 2004. “The Statistical Analysis of Roll Call Data.” American Political Science Review 98(2): 355-70.

     

    Poole, Keith T., and Howard Rosenthal. 2007. Ideology & Congress (Second, revised edition of Congress: A Political-Economic History of Roll Call Voting). New York: Taylor & Francis.

     

    Week 9   Midterm oral report

     

    III.       Causality: Counterfactual Perspective

     

    Causal Inference (1): Counterfactual (or Neyman-Rubin) Model

     

    Week 10          黃紀,2010,〈因果推論與效應評估:區段識別法及其於「選制效應」之應用〉,《選舉研究》17(2): 103-134。(讀第12

    黃紀、傅澤民,2025,第一章。

    Morgan, Stephen L. and Christopher Winship. 2015. “The Counterfactual Model.” Chapter 2 in Counterfactuals and Causal Inference.

     

    Rubin, Donald B. 1974. “Estimating Causal Effects of Treatments in Randomized and Nonrandomized Studies.” Journal of Educational Psychology 66(5): 688-701.

    Huber 2023, Chapters 1-2.

    Ashworth et al. 2021. Chapter 5: Sections 5.1 & 5.2.

     

    Recommended readings:

    Sekhon, Jasjeet S. 2008. “The Neyman-Rubin Models of Causal Inference and Estimation via Matching Methods.” Chapter 11 in The Oxford Handbook of Political Methodology. Pp. 271-299.

     

    Causal Inference (2):  Experimental Designs

     

    Week 11          Campbell & Stanley, pp. 1-34.

     

    Green, Donald P. 2022. “A Tour of Social Science Experiments.” Chapter 4 in Scoial Science Experiments: A Hands-on Introduction. Cambridge University Press.

     

    Druckman and Green. 2021. “A New Era of Experimental Political Science.” Chapter 1 in Advances in Experimental Political Science.

     

    Bansak, Kirk, et al. 2021. “Conjoint Survey Experiments.” Chapter 2 in Advances in Experimental Political Science. ed. Druckman & Green. Cambridge U Press.

     

    Ashworth et al. 2021. Chapter 5: Sections 5.3.1 & 5.3.2.

    黃紀、傅澤民,2025,第二至十章。

    Recommended readings:

    黃紀,2024,〈因果推論在政治學中之發展與應用:以調查實驗為例〉,《中國統計學報》,62(3): 156-196。

    黃紀,2017,〈TEDS網路調查實驗平台第一次測試報告〉,科技部專題研究計畫〈2016年至2020年「臺灣選舉與民主化調查」四年期研究規劃(1/4)〉(MOST 105-2420-H-004 -015 -SS4)。

    Blair, Graeme, Alexander Coppock, and Macartan Humphreys. 2023. Research Design in the Social Sciences. Princeton, NJ: Princeton University Press.

     

    Causal Inference (3):  Natural Experiment with Regression Discontinuity (RD)

     

    Week 12              Dunning, Thad. 2012. Natural Experiments in the Social Sciences: A Design-Based Approach. Cambridge: Cambridge University Press. Chapters 1-5;

     

    Cattaneo, Matias D., Nicolas Idrobo and Rocio Titiunik. 2020. A Practical Introduction to Regression Discontinuity Designs: Foundations. Cambridge: Cambridge University Press.

     

    Huang, Chi (黃紀). 2021. Youth Turnout in Referendums and Elections: Evidence from Regression Discontinuity Designs.Taiwanese Political Science Review《台灣政治學刊》25(2): 169-218.

     

    Ashworth et al. 2021. Chapter 5: Sections 5.3.4 & 5.4.1..]

     

    Causal Inference (4):  Observational Studies with Doubly Robust Methods

     

    Week 13       Huber, 2023, Sections 4.1~4.7 & 5.1~5.3;

     

    Bai, Haiyan, and M. H. Clark. 2019. Propensity Score Methods and Application, Chapters 14.

     

    Causal Inference (5):  Effect Heterogeneity and Moderation

     

    Week 14       Huber 2023, Section 5.4

    Zheng, Li, and Weiwen Yin. 2023. "Estimating and Evaluating Treatment Effect Heterogeneity: A Causal Forests Approach." Research and Politics.

     

    Bansak, Kirk. 2021. "Estimating Causal Moderation Effects with Randomized Treatments and Non-Randomized Moderators." Journal of the Royal Statistical Society Series A: Statistics in Society 184(1): 65-86.

     

     

    Causal Inference (6):  Causal Mediation 

     

    Week 15  Huber 2023, Section 4.10;

        Imai, Kosuke, Luke Keele, Dustin Tingley, and Teppei Yamamoto. 2011. "Unpacking the Black Box of Causality: Learning about Causal Mechanisms from Experimental and Observational Studies." American Political Science Review 105(4): 765-89.

     

    Nguyen, Trang Quynh, Ian Schmid, and Elizabeth A. Stuart. 2021. "Clarifying Causal Mediation Analysis for the Applied Researcher: Defining Effects Based on What We Want to Learn." Psychological Methods 26(2): 255-71.

     

    Bansak, Kirk. 2020. "Comparative Causal Mediation and Relaxing the Assumption of No Mediator–Outcome Confounding: An Application to International Law and Audience Costs." Political Analysis 28(2): 222-43.

                   Recommended readings:

    Wodtke, Geoffrey T. and Zhou Xiang. forthcoming. Causal Mediaiton Analysis. Cambridge University Press.

     

    Week 16                    Term paper oral report

     

    12/19            Term paper due

     

    授課方式Teaching Approach

    40%

    講述 Lecture

    40%

    討論 Discussion

    0%

    小組活動 Group activity

    20%

    數位學習 E-learning

    0%

    其他: Others:

    評量工具與策略、評分標準成效Evaluation Criteria

    Midterm oral report    10%

    Term paper           50%

    Participation           20%

    Exercises & Quizzes    20%

    指定/參考書目Textbook & References

    Armstrong, David A., et al. 2021. Analyzing Spatial Models of Choice and Judgment with R, 2nd edition. Boca Raton: CRC Press.

    Ashworth, Scott, Christopher R Berry, and Ethan Bueno de Mesquita. 2021. Theory and Credibility: Integrating Theoretical and Empirical Social Science. Princeton, NJ: Princeton University Press.

    Box-Steffensmeier, Janet, Henry E. Brady, and David Collier. eds. 2008. The Oxford Handbook of Political Methodology. Oxford: Oxford University Press.

    Campbell, Donald T., and Julian C. Stanley. 1963. Experimental and Quasi-Experimental Designs for Research. Boston: Houghton Mifflin.  

    Downs, Anthony. 1957. An Economic Theory of Democracy. New York: Harper & Row.

    Hinich, Melvin J., and Michael C. Munger. 1997. Analytical Politics. Cambridge: Cambridge University Press.

    Huber, Martin. 2023. Causal Analysis: Impact Evaluation and Causal Machine Learning with Applications in R. The MIT Press. (以下簡稱Huber 2023) 線上版:Causal Analysis by Huber (ublish.com)

    Morgan, Stephen L., and Christopher Winship. 2015. Counterfactuals and Causal Inference: Method and Principles for Social Science, 2nd, edition. Cambridge: Cambridge University Press.

    Persson, Torsten and Guido Tabellini. 2003. The Economic Effects of Constitutions. Cambridge: The MIT Press.

    Wickham, Hadley, and Garrett Grolemund. 2023. R for Data Science: Import, Tidy, Transform, Visualize, and Model Data, 2nd edition. Sebastopol, CA: O’Reilly. 免費線上版 website: https://r4ds.hadley.nz/ .

    黃紀、王德育,2025,《質變數與受限依變數的迴歸分析》第二版,台北:五南。

    黃紀、傅澤民,2025《聯合網調實驗:理論與實務》,台北:五南。

    陳陸輝 主編,2023,《民意調查》,台北:五南。

    瞿海源、畢恆達、劉長萱、楊國樞 主編2015,《社會及行為科學研究法(一):總論與量化研究法》,台北:東華書局。

    謝復生,2013,《實證政治理論》,台北:五南圖書出版公司。

    已申請之圖書館指定參考書目 圖書館指定參考書查詢 |相關處理要點

    書名 Book Title 作者 Author 出版年 Publish Year 出版者 Publisher ISBN 館藏來源* 備註 Note

    維護智慧財產權,務必使用正版書籍。 Respect Copyright.

    本課程可否使用生成式AI工具Course Policies on the Use of Generative AI Tools

    有條件開放使用:需註明引述 Conditional Permitted to Use

    課程相關連結Course Related Links

    Taiwan's Election and Democratization Study (TEDS):  http://www.tedsnet.org/ (ICPSR 35094)
    
    install_github("https://github.com/davidaarmstrong/asmcjr")
    

    課程附件Course Attachments

    課程進行中,使用智慧型手機、平板等隨身設備 To Use Smart Devices During the Class

    需經教師同意始得使用 Approval

    列印