教學大綱 Syllabus

科目名稱:經濟數學(一)

Course Name: Mathematics for Economics (I)

修別:必

Type of Credit: Required

3.0

學分數

Credit(s)

40

預收人數

Number of Students

課程資料Course Details

課程簡介Course Description

在經濟學中,數理方法是不可或缺的工具,被廣泛地應用於經濟理論的證明與推導中。除此之外,近年隨著電腦普及與運算能力的提昇,資訊工具在經濟分析中扮演著日漸重要的角色。然而對於數學和資訊工具的不熟悉,常是同學在學習公共經濟議題分析時的挫折來源。本課程因此希望能幫助對於經濟分析有興趣的學生,介紹在此領域中常用的基礎數學與資訊工具,透過課堂講授與課後練習,逐步培養學生將數理與數量方法應用於經濟問題分析的興趣與能力。

Modern economics demand its practitioners to have a solid grasp of advanced mathematical and computing tools, yet mathematics and programming are often the sources of anxiety and frustration for students. This course is thus designed for students in public finance who want to be acquainted with these tools and their applications in the economic analysis. While this is a course on mathematical methods, the emphasis is on their uses in the discipline of economics and their implementation in modern statistical packages.

核心能力分析圖 Core Competence Analysis Chart

能力項目說明


    課程目標與學習成效Course Objectives & Learning Outcomes

    本課程將介紹在公共經濟分析常用之數理方法,包含線性代數、靜態比較及最適化方法等,教學內容著重於此類方法的應用及在現代電腦軟體的實作。修習課程後,學生可具有使用這些工具來推導經濟問題的概念與經驗,作為未來修習公共經濟相關課程及分析經濟議題的基礎。

    The course aims to help undergraduate students acquire sufficient mathematical skills to access the literature in public finance. Students should develop both mathematical and economic intuitions through lectures, in-class exercises, and practice problems. Specifically, we plan to cover the mathematics required to tackle the following types of economic analysis: equilibrium analysis, comparative statics, constrained optimization, and dynamic analysis.

    本課程預計介紹下列內容,但實際授課進度及議題將依課程需要調整:

    • Computational Linear Algebra
    • Static Equilibrium Analysis in Economics 
    • Comparative Statics 
    • Constrained Optimization 
    • Optimal Control Theory (if time permits)

    每周課程進度與作業要求 Course Schedule & Requirements

    Week  

      Topic

    Readings

    1

      Introduction to Mathematics for Economics

      Chiang & Wainwright (2005): Ch. 1-3

    2

      Introduction of Linear Algebra and the R Language

      Chiang & Wainwright (2005): Ch. 4

    3

      Solution to a System of Linear Equation, pt. 1

      Chiang & Wainwright (2005): Ch. 4

    4

      Solution to a System of Linear Equation, pt. 2

      Chiang & Wainwright (2005): Ch. 4

    5

      Determinants and Cramer’s Rule

      Chiang & Wainwright (2005): Ch. 5

    6

      Application of Linear Algebra and Equilibrium Analysis

      Chiang & Wainwright (2005): Ch. 5

    7

      Linear Algebra and Geometry

      Chiang & Wainwright (2005): Ch. 5

    8

      Midterm

     

    9

      Comparative Statics, pt. 1

      Chiang & Wainwright (2005): Ch. 6-7

    10

      Comparative Statics, pt. 2

      Chiang & Wainwright (2005): Ch. 8

    11

      Applications of Comparative Statics

      Chiang & Wainwright (2005): Ch. 8

    12

      Unconstrained Optimization

      Chiang & Wainwright (2005): Ch. 9

    13

      Constrained Optimization, pt. 1

      Chiang & Wainwright (2005): Ch. 11

    14

      Constrained Optimization, pt. 2

      Chiang & Wainwright (2005): Ch. 12

    15

      Nonlinear Optimization

      Chiang & Wainwright (2005): Ch. 13

    16

      Final Exam

     

     

    The teaching schedule is subject to change. The dates for midterm and final exams are not fixed and could be moved depending on the teaching progress. If there are any changes to the dates of the midterm or final exams, they will be announced in class and on the class website. Additional information regarding week 17 and 18 will be provided during class discussions.

     

    授課方式Teaching Approach

    60%

    講述 Lecture

    20%

    討論 Discussion

    10%

    小組活動 Group activity

    10%

    數位學習 E-learning

    0%

    其他: Others:

    評量工具與策略、評分標準成效Evaluation Criteria

    • Assignments and Class Participation (30%)
    • Midterm and Final Exams (70%)

     

     

    指定/參考書目Textbook & References

    Main Text

    Chiang, Alpha C., and Kevin Wainwright. (2005) Fundamental methods of mathematical economics (4th eds.). Boston, Mass: McGraw-Hill. ISBN:9780071238236

    Additional References

    • Silberberg, Eugene, and Wing Chuen Suen. (2001) The structure of economics: a mathematical analysis (3rd eds.). Boston, Mass: McGraw-Hill. ISBN: 9780072343526.
    • Hoy, Michael, John Livernois, Chris McKenna, Ray Rees, and Thanasis Stengos. (2011) Mathematics for Economics (3rd eds.). The MIT Press. ISBN: 9780262015073.
    • Sydsæter, Knut, Peter J. Hammond, Arne Strom, and Andrés Carvajal. (2016) Essential mathematics for economic analysis (6th eds.). Pearson Education. ISBN: 9781292359342

    已申請之圖書館指定參考書目 圖書館指定參考書查詢 |相關處理要點

    維護智慧財產權,務必使用正版書籍。 Respect Copyright.

    本課程可否使用生成式AI工具Course Policies on the Use of Generative AI Tools

    有條件開放使用:本課程課後作業可使用 AI 協助,但學生需能充份瞭解作答內容,並對答案正確性負責。 Conditional Permitted to Use

    課程相關連結Course Related Links

    
                

    課程附件Course Attachments

    課程進行中,使用智慧型手機、平板等隨身設備 To Use Smart Devices During the Class

    需經教師同意始得使用 Approval

    列印