教學大綱 Syllabus

科目名稱:階層線性模型分析

Course Name: Hierarchical Linear Modeling

修別:選

Type of Credit: Elective

3.0

學分數

Credit(s)

25

預收人數

Number of Students

課程資料Course Details

課程簡介Course Description

Data in education, psychology, medicine, public health, sociology and other applied sciences are often clustered or show a multilevel or hierarchical structure. Data with this structure are usually dependent within each cluster and this dependency violates the assumption of independent observations which most standard statistical models and tests assumed. Hierarchical Linear Model is one of the modeling approaches which is developed to handle data with nested structure. This course provides an introduction to the use of hierarchical or multilevel models. Topics covered in this course include an overview of regression methods and models, introduction to multilevel models, random intercept and slope models, model buildings, hypothesis testing, and model assessment. In addition to the formulation and specification of hierarchical linear models, students will learn how to fit various HLMs using statistical packages in computer lab sections.

核心能力分析圖 Core Competence Analysis Chart

能力項目說明


    課程目標與學習成效Course Objectives & Learning Outcomes

    The purpose of this course is to provide students with an introductory background in the basic principles and applications of hierarchical linear modeling (HLM) in psychology and educational research. The course will review both the conceptual issues and methodological issues in using hierarchical linear modeling. Computer lab sections are designed to introduce how various models can be fitted using statistical software.

    • To understand the context and reasons for modeling data with multilevel modeling approach.
    • To understand multilevel models as a generalization of linear regression models.
    • To gain knowledge of various models under multilevel modeling framework.
    • To gain experience building, fitting, and evaluating multilevel and hierarchical models
    • To gain experience analyzing data using the multilevel modeling approach.
    • To learn how to interpret and report the results using multilevel modeling approach.

    每周課程進度與作業要求 Course Schedule & Requirements

    教學週次Course Week 彈性補充教學週次Flexible Supplemental Instruction Week 彈性補充教學類別Flexible Supplemental Instruction Type

    週次

    Week

    課程主題

    Topic

    課程內容與

    指定閱讀

    Content and Reading Assignment

    教學活動

    與作業

    Teaching Activities and Homework

    學習投入時間

    Student workload expectation

    課堂

    講授

    In-class Hours

    課程

    前後

    Outside-of-class Hours

    1

    Overview of the course

    Overview syllabus

    Get to know students

    確認選課

    課程內容介紹

    課程進行方式說明

    課程要求及評分標準

    3

    3

    2

    Regression

    Simple Regression

    Multiple Regression

    Coefficient Estimation

    Coefficient interpretation

    Variable Selection

    Model Evaluation

    Model Diagnosis

    3

    6

    3

    Introduction to multilevel modeling

    Nested Data Structure

    Introduction to multilevel modeling

    Reading: Ch1+Ch2

    Concept

    Data Structure

     

    3

    6

    4

    Related Models and Methods -1

    Review related models and methods for analyzing nested data structure

    Reading: Ch3

    Multiple regression

    mixed effects ANOVA

    3

    6

    5

    Random Intercept

    Theory of Random Intercept Models

    Reading: Ch4

    Model Specification

    Model Interpretation

    3

    6

    6

    Computation Skills Lab 1

    Data Setup / PROC MIXED

    SAS Introduction

    Analyzing Empirical Data

    Demo/Illustration

    3

    6

    7

    Random Intercept and Slope Models

    Theory of Random Intercept and Slope Models

    Reading: Ch5

    Model Specification

    Model Interpretation

    3

    6

    8

    Computation Skills Lab 2

    Analyzing Empirical Data

     

    Analyzing Empirical Data

    Demo/Illustration

    -

    5

    9

    Midterm Week

    Review / Catch Up

    Review / Catch Up

    -

    6

    10

    Longitudinal data HLM

    Longitudinal Data: Multilevel Modeling Approach

    Sec01: Introduction

    Sec02: GLM-again

    3

    6

    11

    Longitudinal data HLM

    Longitudinal Data: Multilevel Modeling Approach

    Sec03: WP Analysis

    Sec04: Model Comparison

    Sec05: Alternative CS

    3

    6

    12

    Longitudinal data HLM

    Longitudinal Data: Multilevel Modeling Approach

    Sec06: RE of Time

    Sec07: MLMs to SEMs

    3

    6

    13

    Longitudinal data HLM

    Longitudinal Data: Multilevel Modeling Approach

    Sec08: Estimation

    Sec09: WP Change over Time

    3

    6

    14

    Holiday

    -

    -

    -

    5

    15

    Longitudinal data HLM

    Longitudinal Data: Multilevel Modeling Approach

     

    Sec10: Handling Missing

    Sec11: Time Invariant Predictors

    3

    6

    16

    Final Project

    Individual Presentation

    Final Report Presentation

    3

    6

    17

    自主學習

    課程內容回顧和統整

    Final Course Review

    -

    5

    18

    自主學習

    課程內容回顧和統整

    Final Course Review

    -

    5

    授課方式Teaching Approach

    65%

    講述 Lecture

    25%

    討論 Discussion

    10%

    小組活動 Group activity

    0%

    數位學習 E-learning

    0%

    其他: Others:

    評量工具與策略、評分標準成效Evaluation Criteria

    Students will be evaluated on the basis of homework, lab assignments, and participation

    • Homework (10%*4=40%)
    • Lab assignments (10%*2=20%)
    • Final Report (30%)
    • Class participation (10%)

    評分標準

    • Lab assignments評分標準: 依照作業配分以正確度和說明的清晰及完整性給分
    • Class participation: Will randomly check class attendance (miss class without proper reasons: -2%/time)
    • Homework 評分標準

     

    Homework評分標準

    尺度

    向度

    10-9

    8-7

    6-5

    4-3

    2-1

    內容正確性

    (70%)

    專業知能、分析及回應均優

    專業知能、分析及回應均佳

    專業知能、分析及回應頗佳

    專業知能、分析及回應欠佳

    專業知能、分析及回應差

    視覺呈現

    (15%)

    作業顏色字體版面設計均佳

    作業字體版面設計頗佳

    作業顏色字體版面設計尚佳

    作業顏色字體版面設計欠佳

    作業顏色字體版面設計頗差

    用字語句,錯別字(15%)

    用字精確合宜語句清楚,沒有錯別字

    用字,語句使用清楚,極少錯別字

    用字語句使用尚佳,少數錯別字

    用字語句使用尚可,一些錯別字

    用字語句使用差強人意,錯別字多

     

    • Final Report 評分標準

    Final Report 評分標準

    尺度

    向度

    10-9

    8-7

    6-5

    4-3

    2-1

    內容正確

    (50%)

    說明實作內容完全正確

    說明實作內容幾乎完全正確

    說明實作內容大致正確

    說明實作內容部分錯誤

    說明實作內容嚴重錯誤

    口語表達

    (30%)

    口語表達流利/清楚正確/專業從容

    口語表達清楚正確/表現從容

    口語表達大致正確/但不夠清楚

    口語表達不夠清楚,語意不清

    口語表達不清楚,慌亂失措

    時間掌握/細節 (20%)

    熟悉掌握各施測細節/時間掌握精準

    掌握施測細節/時間掌握良好

    大致掌握施測細節與施測時間

    施測細節/施測時間掌握不夠好

    施測細節/時間出現重大瑕疵

     

     

    指定/參考書目Textbook & References

    Snijders, T. & Bosker, R. (2012). Multilevel analysis:  An introduction to basic and advanced multilevel modeling (2nd Edition). Thousand Oaks, CA: Sage.

    已申請之圖書館指定參考書目 圖書館指定參考書查詢 |相關處理要點

    維護智慧財產權,務必使用正版書籍。 Respect Copyright.

    本課程可否使用生成式AI工具Course Policies on the Use of Generative AI Tools

    禁止使用:本課程作業或書面報告應親自撰寫,禁止使用生成式AI輔助或產出。 Prohibited Uses

    課程相關連結Course Related Links

    Moodle

    課程附件Course Attachments

    課程進行中,使用智慧型手機、平板等隨身設備 To Use Smart Devices During the Class

    需經教師同意始得使用 Approval

    列印