教學大綱 Syllabus

科目名稱:計算語言學

Course Name: Computational Linguistics

修別:選

Type of Credit: Elective

3.0

學分數

Credit(s)

20

預收人數

Number of Students

課程資料Course Details

課程簡介Course Description

此課程將著重於簡介語言學如何應用於計算語言學領域,講課內容包含基本理論及大量實作練習。希望學生能於課程結束之後,能自行運用常見機器學習模組 (e.g., SVM, MaxEnt, RNN, LSTM, ELMO, BERT 等) 做相關語言學研究。此門課期待學生已有基本 python 程式基礎,以便於能於課程中直接做應用練習。(每週需自行攜帶筆電至課堂)

 

核心能力分析圖 Core Competence Analysis Chart

能力項目說明


    課程目標與學習成效Course Objectives & Learning Outcomes

    期望學生能於修習課程後,對於機器學習模型有個大概了解,以及語言學相關研究能知道如何透過這些模型做出應用,於之後畢業論文撰寫或是至業界找相關工作時能有基礎知識。

    每周課程進度與作業要求 Course Schedule & Requirements

    教學週次Course Week 彈性補充教學週次Flexible Supplemental Instruction Week 彈性補充教學類別Flexible Supplemental Instruction Type

    (暫定)
    *課程內容與指定閱讀、教學活動與作業等相關活動將於開學前提供 (每週需自行攜帶筆電至課堂)

    週次            課程主題          學習投入時數

    week 1        Course Introduction          5+

    week 2        N-gram and language model           5+

    week 3        Naive bayes, model training and evaluation           5+

    week 4        Logistic regression and gradient descent           5+

    week 5        Embeddings and weightings                  5+

    week 6        Basic neural networks              5+

    week 7        Sequence labeling (HMM and CRF)       5+

    week 8        Deep learning (RNN, LSTM, Transformers)                  5+

    week 9        Machine translation       5+

    week 10      Transfer learning           5+

    week 11      Discourse coherence   5+

    week 12      Question answering      5+

    week 13      Chatbots and dialogue systems     5+

    week 14      Project Discussion          5+

    week 15      Final Presentation         5+

    week 16      Term Paper Due           5+

    授課方式Teaching Approach

    30%

    講述 Lecture

    30%

    討論 Discussion

    30%

    小組活動 Group activity

    5%

    數位學習 E-learning

    5%

    其他: Others: 網路教材

    評量工具與策略、評分標準成效Evaluation Criteria

    (暫定)

    評分方式:

    - 出席 20%

    - 課堂練習/作業: 20%

    - 課堂報告: 20%

    - 期末口頭發表: 20%

    - 期末報告: 20%

    指定/參考書目Textbook & References

    – Dan Jurafsky and James H. Martin. (2018). Speech and Language
    Processing (3rd edition). Available at: https://web.stanford.edu/~jurafsky/slp3/.

    – Benjamin Bengfort, Tony Ojeda and Rebecca Bilbro. (2018). Applied Text Analysis with Python: enabling language-aware data products with machine learning. O’Reilly.


    – Jacob Perkins, Nitin Hardeniya, Deepti Chopra, Nisheeth Joshi and Iti Mathur. (2016). Natural Language Processing: Python
    and NLTK. O’Reilly.


    – Mark Lutz. (2015). Learning Python (5th edition). O’Reilly.


    – Ruslan Mitkov. (2014). The Oxford Handbook of Computational Linguistics (2nd edition). Oxford University Press.


    – Chris Manning and Hinrich Schütze. (1999). Foundations of Statistical Natural Language Processing. MIT Press.

    已申請之圖書館指定參考書目 圖書館指定參考書查詢 |相關處理要點

    維護智慧財產權,務必使用正版書籍。 Respect Copyright.

    本課程可否使用生成式AI工具Course Policies on the Use of Generative AI Tools

    完全開放使用 Completely Permitted to Use

    課程相關連結Course Related Links

    
                

    課程附件Course Attachments

    課程進行中,使用智慧型手機、平板等隨身設備 To Use Smart Devices During the Class

    Yes

    列印