教學大綱 Syllabus

科目名稱:時間數列分析

Course Name: Time Series Analysis

修別:群

Type of Credit: Partially Required

3.0

學分數

Credit(s)

80

預收人數

Number of Students

課程資料Course Details

課程簡介Course Description

The objective of this course is to equip students with forecasting techniques and knowledge on statistical methods for analyzing time series data.

Prerequisite Capacities(先備課程): Mathematical Statistics

註:
1. 先備課程「數理統計學」:2月開學前,需修過二學期。
2. 期中考、期末考,僅為暫定之日期,會視課程進度調整時間。

核心能力分析圖 Core Competence Analysis Chart

能力項目說明


    課程目標與學習成效Course Objectives & Learning Outcomes

    The topics include ACF and PACF functions, ARIMA processes, best linear prediction, model building and model selection, frequency domain analysis, GARCH and Stochastic Volatility models, VAR models, and other multivariate time series models.

    每周課程進度與作業要求 Course Schedule & Requirements

    教學週次Course Week 彈性補充教學週次Flexible Supplemental Instruction Week 彈性補充教學類別Flexible Supplemental Instruction Type

     

    週次

    Week

    課程主題

    Topic

    課程內容與指定閱讀

    Content and Reading Assignment

    教學活動與作業

    Teaching Activities and Homework

    學生學習投入時間

    Student workload expectation

    課堂講授

    In-class Hours

    課程前後

    Outside-of-class Hours

    1

    (Feb. 20)

    Introduction

    (S&S, 2016) Chapter 1

     Lecture

    3

    2

    2

    (Feb. 27)

    ACF and PACF functions

    (S&S, 2016) Chapter 1

     Lecture

    3 2

    3

    (Mar. 6)

    ACF and PACF functions; AR(p)

    (S&S, 2016) Chapter 3

     Lecture

     HW

    3

    2

    4

    (Mar. 13)

    MA(q) process

    (S&S, 2016) Chapter 3

     Lecture

     R lab

    3

    2

    5

    (Mar. 20)

    ARIMA processes

    (S&S, 2016) Chapter 3

     Lecture

    3

    2

    6

    (Mar. 27)

    SARIMA processes

    (S&S, 2016) Chapter 3

     Lecture

    3

    2

    7

    (Apr. 3)

    School Holiday

     

     

     

     

    8

    (Apr. 10)

    Midterm Exam

    (S&S, 2016) Chapter 3

     

    0

    7

    9

    (Apr. 17)

    model building and model selection

    (S&S, 2016) Chapter 3 and 4

     R lab and HW

    3

    3

    10

    (Apr. 24)

    model building and model selection: R lab

    (S&S, 2016) Chapter 4

     Lecture

    3

    2

    11

    (May 1)

    real data analysis: some examples

     

     Lecture

    3

    2

    12

    (May 8)

    frequency domain analysis

    (Tsay, 2012)  Chapter 4

     Lecture

     R lab

    3

    2

    13

    (May 15)

    ARCH and GARCH models

    (Tsay, 2014)  Chapter 2 and 4

     Lecture

     HW

    3 2

    14

    (May 22)

    Stochastic Volatility models and VAR models

     

     

    3

    2

    15

    (May 29)

    multivariate time series models

    (Tsay, 2014)  Chapter 2 ~ 7

     Lecture

    3

    2

    16

    (June 5)

    Final Exam

     

     

    0

    10

    17

    (June 12)

    16+2周,自主統整學習

     

         

    18

    (June 19)

    16+2周,自主統整學習

     

         

     

    授課方式Teaching Approach

    90%

    講述 Lecture

    0%

    討論 Discussion

    0%

    小組活動 Group activity

    10%

    數位學習 E-learning

    0%

    其他: Others:

    評量工具與策略、評分標準成效Evaluation Criteria

    Midterm Exam: 35%

    Final Exam: 35%

    Homework: 15%

    Attendance/Participation: 15%

    All the data analysis (homework) will be implemented using software R.

     

     

    指定/參考書目Textbook & References

    Reference (參考書目):
    1. Shumway and Sto ffer. (2016). Time Series Analysis and its Applications with R Examples. 
    2. Tsay. (2012). An Introduction to Analysis of Financial Data with R.
    3. Tsay. (2014). Multivariate Time Series Analysis.

     

    已申請之圖書館指定參考書目 圖書館指定參考書查詢 |相關處理要點

    維護智慧財產權,務必使用正版書籍。 Respect Copyright.

    本課程可否使用生成式AI工具Course Policies on the Use of Generative AI Tools

    本課程無涉及AI使用 This Course Does Not Involve the Use of AI.

    課程相關連結Course Related Links

    http://moodle.nccu.edu.tw/

    課程附件Course Attachments

    課程進行中,使用智慧型手機、平板等隨身設備 To Use Smart Devices During the Class

    需經教師同意始得使用 Approval

    列印