教學大綱 Syllabus

科目名稱:生成式人工智慧

Course Name: Generative AI

修別:選

Type of Credit: Elective

3.0

學分數

Credit(s)

40

預收人數

Number of Students

課程資料Course Details

課程簡介Course Description

  • Introduction to Generative AI
  • Large Language Models (LLMs)
  • Text-to-image & text-to-video generation
  • Bridging text and audio

核心能力分析圖 Core Competence Analysis Chart

能力項目說明


    課程目標與學習成效Course Objectives & Learning Outcomes

    • Equip students with practical knowledge of Generative AI, focusing on text and multimedia generation technologies.

    每周課程進度與作業要求 Course Schedule & Requirements

    教學週次Course Week 彈性補充教學週次Flexible Supplemental Instruction Week 彈性補充教學類別Flexible Supplemental Instruction Type
    • Week1 (9/13): Chap1 AI in a Nutshell
    • Week2 (9/20): Chap2 Introduction to Generative AI
    • Week3 (9/27): Chap3 Evolution of Neural Networks to Large Language Models (1/2)
    • Week4 (10/4): TA labs: GitHub copilot , Google Colab, Kaggle
    • Week5 (10/11): Chap3 Evolution of Neural Networks to Large Language Models (2/2)
    • Week6 (10/18): Class quiz#1, Chap4 LLMs and Transformers (1/2)
    • Week7 (10/25): Chap4 LLMs and Transformers (2/2)
    • Week8 (11/1): Chap5 The ChatGPT Architecture
    • Week9 (11/8): Chap6 Text-to-Image Generation (1/2)
    • Week10 (11/15): Term project #1 due
    • Week11 (11/22): Class quiz#2, Chap6 Text-to-Image Generation (2/2)
    • Week12 (11/29): Chap7 From Script to Screen - Unveiling Text-to-Video Generation (1/2)
    • Week13 (12/6): Chap7 From Script to Screen - Unveiling Text-to-Video Generation (2/2)
    • Week14 (12/13): Chap8 Bridging Text and Audio in Generative AI (1/2)
    • Week15 (12/20): Class quiz#3, Chap8 Bridging Text and Audio in Generative AI (2/2)
    • Week16 (12/27): Term project #2 due
    • Week17 (1/3): 教師彈性補充教學
    • Week18 (1/10): 教師彈性補充教學

    附註: 

    課程內容與指定閱讀:上課投影片
    教學活動與作業:[Week 1-16]老師授課、助教實習及測驗,[Week 17-18] 彈性補充教學
    學習投入時數(含課堂及課程前後):3小時 (4.5小時)

    授課方式Teaching Approach

    50%

    講述 Lecture

    0%

    討論 Discussion

    0%

    小組活動 Group activity

    0%

    數位學習 E-learning

    50%

    其他: Others: TA labs (10%) Term projects (40%)

    評量工具與策略、評分標準成效Evaluation Criteria

    • Class quizzes: 30%
    • Term projects: 70%

    指定/參考書目Textbook & References

    Textbook

    • Akshay Kulkarni, Adarsha Shivananda, Anoosh Kulkarni, Dilip Gudivada, "Applied Generative AI for Beginners: Practical Knowledge on Diffusion Models, ChatGPT, and Other LLMs," Apress, 2023.
    • Martin Musiol, "Generative AI: Navigating the Course to the Artificial General Intelligence Future," Wiley, 2024.
    • Shivam R Solanki and Drupad K Khublani, "Generative Artificial Intelligence - Exploring the Power and Potential of Generative AI," Apress, 2024.

    References

    • Valentina Alto, "Modern Generative AI with ChatGPT and OpenAI Models: Leverage the capabilities of OpenAI's LLM for productivity and innovation with GPT3 and GPT4," Packt Publishing, 2023.
    • Ben Auffarth, “Generative AI with LangChain: Build large language model (LLM) apps with Python, ChatGPT, and other LLMs,” Packt Publishing, 2023.
    • Ken Huang, Yang Wang, Feng Zhu, Xi Chen, Chunxiao Xing, "Beyond AI: ChatGPT, Web3, and the Business Landscape of Tomorrow, Springer, 2023.
    • Tom Taulli, "Generative AI: How ChatGPT and other AI Tools will Revolutionize Business," Apress, 2023.

    已申請之圖書館指定參考書目 圖書館指定參考書查詢 |相關處理要點

    維護智慧財產權,務必使用正版書籍。 Respect Copyright.

    課程相關連結Course Related Links

    N/A

    課程附件Course Attachments

    課程進行中,使用智慧型手機、平板等隨身設備 To Use Smart Devices During the Class

    Yes

    列印