教學大綱 Syllabus

科目名稱:人智計算

Course Name: Human-Centered Computing

修別:群

Type of Credit: Partially Required

3.0

學分數

Credit(s)

10

預收人數

Number of Students

課程資料Course Details

課程簡介Course Description

Outline:

1. Introduction to Multimedia

1.1. What is Multimedia?

1.2. Overview of Multimedia Applications

1.3. Multimedia Research Resources

2. Multimedia Basics

2.1. Graphics and Image Data Representations

2.2. Color in Image and Video

2.3. Fundamental Concepts in Video

2.4. Basics of Digital Audio

3. Multimedia Processing & Coding

3.1. Video coding fundamentals

3.2. Lossless Compression & Lossy Compression

3.3. Transform Coding

3.4. Motion Compensated Predictive Coding

4. Multimedia Coding Standards

4.1. JPEG, JPEG-2000

4.2. H.261, H.263, MPEG-1, MPEG-2, MPEG-4, and H.264

5. Social Network Basics

5.1. An Introduction to Social Networks

5.2. Properties and Models of Social Networks

5.3. Centrality Analysis and Community Detection

5.4. Information Diffusion in Social Networks

6. Social Multimedia Analytics

6.1. Sentiment, Opinion, Locations, and Multimedia

6.2. Search and Recommendation in Social Media

7. Machine Learning in Social Multimedia Analytics

7.1. Unsupervised Learning

7.2. Discriminative Models

7.3. Generative Graphical Models

8. Advanced Multimedia Processing

8.1. Image Manipulation Techniques

8.2. Interactive Multimedia Editing

核心能力分析圖 Core Competence Analysis Chart

能力項目說明


    課程目標與學習成效Course Objectives & Learning Outcomes

    Dr. Jun-Cheng Chen (Chair)

           Dr. Chia-Wen Lin        

           Dr. Wen-Hung Liao

           Dr. Yan-Tsung Peng

         Dr. Li Su

     

    每周課程進度與作業要求 Course Schedule & Requirements

    教學週次Course Week 彈性補充教學週次Flexible Supplemental Instruction Week 彈性補充教學類別Flexible Supplemental Instruction Type

    Week

    Date

    Topics/Brief Description

    1

    2024/09/11

    Introduction to Multimedia

    2

    2024/09/18

    Multimedia Basics (I)

    3

    2024/09/25

    Multimedia Basics (II)

    4

    2024/10/02

    Audio Analysis in Multimedia (I)

    5

    2024/10/09

    Audio Analysis in Multimedia (II)

    6

    2024/10/16

    Fundamental of Deep Learning (I)

    7

    2024/10/30

    Fundamental of Deep Learning (II)

    Final-Project Proposal Explanation (Milestone I)

    8

    2024/11/06

    Visual Content Processing & Coding (I)

    9

    2024/11/13

    Visual Content Processing & Coding (II)

    10

    2024/11/20

    Image/Video Coding Standards

    11

    2024/11/27

    Final-Project Proposal Presentation (Milestone II)

    12

    2024/12/04

    Midterm Exam

    13

    2024/12/11

    Deep Learning for Image Processing Applications (I)

    14

    2024/12/18

    Deep Learning for Image Processing Applications (II)

    15

    2024/12/25

    Deep Learning for Image Processing Applications (III)

    16

    2024/05/31

    Social Multimedia and Related Applications

    Final-Project Clinic (Milestone III)

    17

    2025/01/01

    HOLIDAY

    18

    2025/01/08

    Final

    授課方式Teaching Approach

    70%

    講述 Lecture

    30%

    討論 Discussion

    0%

    小組活動 Group activity

    0%

    數位學習 E-learning

    0%

    其他: Others:

    評量工具與策略、評分標準成效Evaluation Criteria

    Grades:

    • Class Participation (10%)

    • Homework Assignments: (20%)

    • Midterm Exam (30%)

    • Final Project (40%)

    • Proposal: 10%

    • Demo: 20%

    • Report: 10%

    指定/參考書目Textbook & References

    Textbook/Reference:

    1. Ze-Nian Li, Mark S. Drew, and Jiangchuan Liu, Fundamentals of Multimedia, 2nd edition, Springer, 2014.

    2. Gonzalez and Woods, Digital Image Processing, 3rd edition, Prentice Hall, 2008.

    3. Christopher M. Bishop, Pattern Recognition and Machine Learning, Springer, 2007.

    4. Richard Szeliski, Computer Vision: Algorithms and Applications, Springer, 2010.

    5. Richard J. Radke, Computer Vision for Visual Effects, Cambridge University Press, 2012.

    6. S. Wasserman and K. Faust, Social Network Analysis: Methods and Applications, Cambridge University Press, 1994.

    7. R. A. Hanneman and M. Riddle, Introduction to Social Network Methods, University of California, 2005.

    http://faculty.ucr.edu/~hanneman/nettext/Introduction_to_Social_Network_Methods.pdf

    1. R. Zafarani, M. A. Abbasi, and H. Liu, Social Media Mining: An Introduction, Cambridge University Press, 2014.

    2. Charu C. Aggarwal, Social Network Data Analytics, Springer, 2011.

    3. W. Chen, L. V.S. Lakshmanan, and C. Castillo, Information and Influence Propagation in Social Networks, Morgan & Claypool Publishers, 2013.

    4. Selected research papers.

    已申請之圖書館指定參考書目 圖書館指定參考書查詢 |相關處理要點

    維護智慧財產權,務必使用正版書籍。 Respect Copyright.

    課程相關連結Course Related Links

    
                

    課程附件Course Attachments

    課程進行中,使用智慧型手機、平板等隨身設備 To Use Smart Devices During the Class

    需經教師同意始得使用 Approval

    列印