教學大綱 Syllabus

科目名稱:網路搜索與探勘

Course Name: Web Search and Mining

修別:選

Type of Credit: Elective

3.0

學分數

Credit(s)

30

預收人數

Number of Students

課程資料Course Details

課程簡介Course Description

This course is designed to teach students the following points: 

  1. to provide an overview of Web Search and Mining related research; 
  2. to systematically review the core research topics in the field; 
  3. to show case the most recent research progress; 
  4. to give students enough training for doing research in the field and an opportunity to work on a research project.

核心能力分析圖 Core Competence Analysis Chart

能力項目說明


    課程目標與學習成效Course Objectives & Learning Outcomes

    This course includes the following two parts: 

    Part I: Web Search 
    • Evaluation 
    • Retrieval Model 
    • Language Model 
    • Link Analysis 
    • Web Crawling 

    Part II: Web Mining 
    • Classification 
    • Clustering 
    • Learning to Rank 
    • Recommendation

    每周課程進度與作業要求 Course Schedule & Requirements

    教學週次Course Week 彈性補充教學週次Flexible Supplemental Instruction Week 彈性補充教學類別Flexible Supplemental Instruction Type
    週次 課程主題 課程內容與指定閱讀 教學活動與作業 學習投入時數
    課堂講授 課程前後

    1

    Course Introduction
    Slides
    Textbook

    3.0

    4.5

    2

    Introduction to Web Search and Mining
    Slides
    Textbook

    3.0

    4.5

    3

    Web Search: Ranking Evaluation
    Slides
    Textbook; Assignment

    3.0

    4.5

    4

    Web Search: Vector Space Model
    Slides
    Textbook; Project

    3.0

    4.5

    5

    Web Search: Probabilistic Information Retrieval
    Slides
    Textbook

    3.0

    4.5

    6

    Web Search: Language Model for IR
    Slides
    Textbook; Assignment

    3.0

    4.5

    7

    Web Search: Text Analytics
    Slides
    Textbook

    3.0

    4.5

    8

    清明節放假
    none
    none

    none

    none

    9

    Midterm
    None
    None

    0

    1.5

    10

    Web Mining: Introduction to Machine Learning Techniques
    Slides
    Textbook; Project

    3.0

    4.5

    11

    Web Mining: Classification and Naive Bayes
    Slides
    Textbook; Assignmnet

    3.0

    4.5

    12

    Web Mining: Support Vector Machines (I)
    Slides
    Textbook

    3.0

    4.5

    13

    Web Mining: Support Vector Machines (II)
    Slides
    Textbook; Project

    3.0

    4.5

    14

    Web Mining: Clustering (I)
    Slides
    Textbook

    3.0

    4.5

    15

    Web Mining: Clustering (II)
    Slides
    Textbook

    3.0

    4.5

    16

    Web Mining: Recommender Systems (I)
    Slides
    Textbook

    3.0

    4.5

    17

    Web Mining: Recommender Systems (II)
    Slides
    Textbook

    3.0

    4.5

    18

    Final Project Presenations
    None
    None

    0

    1.5

    授課方式Teaching Approach

    85%

    講述 Lecture

    15%

    討論 Discussion

    0%

    小組活動 Group activity

    0%

    數位學習 E-learning

    0%

    其他: Others:

    評量工具與策略、評分標準成效Evaluation Criteria

    Grading will be based on the following weighting scheme: 
    • Assignments: 25% 
    • Midterm Exam: 30% 
    • Projects: 45% 
    • Bonus (participation): <= 5%

    指定/參考書目Textbook & References

     

    • Introduction to Information Retrieval, by C. Manning, P. Raghavan, and H. Schütze. 


    • Search Engines: Information Retrieval in Practice, by Bruce Croft, Donald Metzler, Trevor Strohman. 


    • Data-Intensive Text Processing with MapReduce, by Jimmy Lin and Chris Dyer. 

    已申請之圖書館指定參考書目 圖書館指定參考書查詢 |相關處理要點

    維護智慧財產權,務必使用正版書籍。 Respect Copyright.

    課程相關連結Course Related Links

    
                

    課程附件Course Attachments

    課程進行中,使用智慧型手機、平板等隨身設備 To Use Smart Devices During the Class

    需經教師同意始得使用 Approval

    列印