教學大綱 Syllabus

科目名稱:認知模型實作

Course Name: Practice of Cognitive Modeling

修別:選

Type of Credit: Elective

3.0

學分數

Credit(s)

5

預收人數

Number of Students

課程資料Course Details

課程簡介Course Description

Cognitive modeling is an important research skill, which cannot only be an embodiment of a theory, but also be used to verify and compare quantitatively theories. Normally, researchers develop a cognitive model according to a particular theory, which addresses the issues about mental representations and mental processes for particular cognitive functions. The issues relevant to cognitive modeling include how to translate written contents of theories to something computable (i.e., model implementation), how to optimze a model's performance, and how to make a fair comparison between models. For model implementation, one needs to know how to use a computer language (e.g., Python or R) to compile the script specifically created for a theory. For model optimzation, we need to know how to choose suitable parameter values to make model predictions as much similar to observed data as possible. To this end, students will be introduced several algorithms for optimizing model performance. The methods of cognitive modeling can also be extended to modeling with the theories in addition to cognitive theories.

This course is specifically designed for Ph.D. students. Anyone who is interested in taking on this course is required to discuss with the lecturer of this course in advance. The prospective students are expected to be able to use at least one computer language, such as Python, R, Matlab, or C/C++. 

 

核心能力分析圖 Core Competence Analysis Chart

能力項目說明


    課程目標與學習成效Course Objectives & Learning Outcomes

    After learning this course, students are expected to be able to (1) implement a theory as a computational model, (2) optimize a model performanace via choosing suitable parameter values, and (3) compare different models performance with different quantitative indices. With these skills, students are expected to be able to do modeling to verify theories.

    每周課程進度與作業要求 Course Schedule & Requirements

    教學週次Course Week 彈性補充教學週次Flexible Supplemental Instruction Week 彈性補充教學類別Flexible Supplemental Instruction Type

    Week                Theme                   Content Activity and Homework                Estimated time devoted to coursework per week (hr)

    1  Introduction    Introduction            Examples of cognitive modeling                                       12 

    2 Theory I          Choosing theories   Discussion with lecturer                                                  12

                            for each student     to choose a theory for implementing

    3 Theory II         Choosing theories   Discussion with lecturer                                                   12

                            for each student     to choose a theory for implementing                                 12

    4 National Day

    5 Optimization I   Parameter parameters     Hill-Climbing algorithm                                          12

    6 Optimization II  Parameter parameters     Simplex algorithm                                                  12

    7 Optimization III  Parameter parameters    Bayeisan inference                                                 12

    8 Optimization IV  Parameter parameters    Bayeisan inference                                                 12

    9 Midterm examination

    10 Optimization V  Parameter parameters    Regulization                                                          12

    11 Optimization VI  Parameter parameters    Cross validation                                                     12

    12 Model comparison I  Goodness of fit       RMSD, AIC, BIC                                                     12

    13 Model comparison II Goodness of fit       G^2, likelihood ratio, etc.                                         12

    14 Model comparison III Bayesian framework  Bayes factor and so on                                         12

    15 Model comparison IV Bayesian framework  Super model                                                        12

    16

    17 Oral presentation I     Oral presentation of        Students finish a project of   

                                       each student's project     cognitive modeling                                                     24                               

    18 Oral presentation II    Oral presetnation of        Students finish a project of

                                       each student's project     cognitive modeling                                                     24                               

     

     

    授課方式Teaching Approach

    25%

    講述 Lecture

    75%

    討論 Discussion

    0%

    小組活動 Group activity

    0%

    數位學習 E-learning

    0%

    其他: Others:

    評量工具與策略、評分標準成效Evaluation Criteria

    Students are required to finish a project by the end of semeter, which must be an implementation of a psychology model. The degree of completeness, the adequancy of modeling methods used in the project, and the explannation to the modeling results will be largely emphasized. 

    指定/參考書目Textbook & References

    Teacher's lecture notes.

    已申請之圖書館指定參考書目 圖書館指定參考書查詢 |相關處理要點

    維護智慧財產權,務必使用正版書籍。 Respect Copyright.

    課程相關連結Course Related Links

    
                

    課程附件Course Attachments

    課程進行中,使用智慧型手機、平板等隨身設備 To Use Smart Devices During the Class

    Yes

    列印