教學大綱 Syllabus

科目名稱:貝氏資料分析

Course Name: Bayesian Data Analysis

修別:選

Type of Credit: Elective

3.0

學分數

Credit(s)

30

預收人數

Number of Students

課程資料Course Details

課程簡介Course Description

貝氏統計不論在學術研究或實務應用上都獲得相當大的成功,它也是目前AI領域中倚重甚深的運算技術。除了國際期刊推荐以貝氏統計取代傳統統計,科技公司例如Google, 臉書,和微軟也應用貝氏統計來分析消費者行為。因此,培養學生認識乃至於精熟貝氏統計方法是件刻不容緩的事。本課程的設計包括,貝氏統計方法的基礎概念、機率分配、貝氏推論、貝氏模擬、貝氏潛在類別分析、貝氏階層線性模型、貝氏項目反應理論、以及狄利克雷歷程混合模型。課程中也將教授學生如何使用程式語言R與JAGS實作貝氏統計分析。這些基礎概念和應用程式練習將幫助學生提昇應用技能,能夠在短時間內進階到國際水準。本課程內容可能會隨進度略有調整,請以實際上課情形為準。

核心能力分析圖 Core Competence Analysis Chart

能力項目說明


    課程目標與學習成效Course Objectives & Learning Outcomes

    本課程目標為 (1) 培養學生具備貝氏統計分析的觀念, (2) 協助學生了解貝氏統計的基本原理, (3) 訓練學生能實際使用貝氏統計方法進行資料分析與模型比較。為此,本課程除了貝氏統計的數理基礎之外,也將要求學生全程使用R語言與JAGS套件進行貝氏統計分析。因此,同學修習本課之後將具備以貝氏統計方法分析資料的能力,以及良好的R語言程式撰寫能力。這兩種能力都是目前資料科學與機器學習領域中被強烈要求的。

    每周課程進度與作業要求 Course Schedule & Requirements

    教學週次Course Week 彈性補充教學週次Flexible Supplemental Instruction Week 彈性補充教學類別Flexible Supplemental Instruction Type

    週次Week

    課程主題Course Theme

    課程內容與指定閱讀Content and Reading Assignment

    教學活動與作業Activity and Homework

    學習投入時數Estimated time devoted to coursework per week

    課堂講授Lecture Hours

    課程前後Preparation Time

    1

    Introduction

    Credibility, Model, and Parameters

    Practice to interpret a statistical question in a Bayesian way

    3.0

    6.0

    2

    R basics and Bayes' theorem

    R commends for different probability distributions and basic concepts of Bayes' theorem

    Homework: Use R to make histogram with the data randomly sampled from different probability density function (z, t, F, and chi-square)

    3.0

    5.0

    3

    AI related issues

    AI ethics, fairness, and robustness

    No homework

    3.0

    3.0

    4

    National Day

     

     

     

     

    5

    Markov Chain  Monte Carlo method

    The principle of MCMC method and maximum likelihood

    Homework: Practice how to do modeling with MCMC method

    3.0

    7.0

    6

    Parameter estimation - Binomial distribution

    Estimate the parameter of Binomial distribution

    Homework: Practice how to estimate the parameter of a Binomial distribution

    3.0

    9.0

    7

    Parameter estimation -normal distribution

    Estimate the parameters of normal distribution

    Homework: Practice how to estimate the parameters of a normal distribution

    3.0

    9.0

    8

    Parameter estimation - t distribution

    Estimate the parameters of t distribution

    Homework: Practice how to estimate the parameters of a t distribution

    3.0

    6.0

    9

    Midterm examination week

    Oral report for your project in class

    Oral report for your project in class

    3.0

    9.0

    10

    Regression and ANOVA in Bayesian style

    Estimate the parameters of general linear model

    Homework: Do regression analysis and ANOVA in Bayesian style

    3.0

    6.0

    11

    Cognitive modeling in Bayesian style

    Introduce how to fit a cognitive model to real data

    Homework: Practice how to do cognitive modeling in Bayesian style

    3.0

    9.0

    12

    Bayes factor and model comparison

    Model comparison in Bayesian framework

    Homework: Practice how to compare two models in Bayesian framework

    3.0

    9.0

    13

    Bayesian latent class analysis

    Introduction to how to extract latent classes in a data set

    Homework: Practice how to fit a Bayesian LCA model and choose the number of latent classes.

    3.0

    6.0

    14

    Hierarchical linear modeling (aka mixed-effects model)

    Introduction to how to implement hierarchical Bayesian linear model

    Homework: Practice how to fit a Bayesian hierarchical linear model using the MathAchieve dataset.

    3.0

    6.0

    15

    Item Response Theory (IRT) in Bayesian style

    Implement a Partial Credit IRT model.

    Homework: Practice how apply Bayesian inference to estimating parameters in the models of IRT

    3.0

    6.0

    16

    Bayesian Nonparameterics by Dirichlet Process Mixtures

    Introduction to nonparametric Bayesian method, Dirichlet process, and Dirichlet process mixture model

    Homework: Practice how to implement Dirichlet Process Mixture Model

    3.0

    6.0

    17

    Oral presetnation I

    Presenting your project in virtual class

    Homework: Prepare your presentation slides and other necessary materials for your project

    3.0

    9.0

    18

    Oral presentation II

    Presenting your project in virtual class

    Homework: Prepare your presentation slides and other necessary materials for your project

    3.0

    9.0

     

    授課方式Teaching Approach

    80%

    講述 Lecture

    20%

    討論 Discussion

    0%

    小組活動 Group activity

    0%

    數位學習 E-learning

    0%

    其他: Others:

    評量工具與策略、評分標準成效Evaluation Criteria

    作業和專案為評分依據。

    其中,完成度、嚴謹度各佔每次作業及專案的50%。

    指定/參考書目Textbook & References

    Kruschke, J. K. (2014). Doing Bayesian Data Analysis (Second Edition) A Tutorial with R, JAGS, and Stan.

    Lee, M. D., & Wagenmakers, E.-J. (2014). Bayesian Cognitive Modeling: A Practical Course. Cambridge University Press, UK.

    已申請之圖書館指定參考書目 圖書館指定參考書查詢 |相關處理要點

    維護智慧財產權,務必使用正版書籍。 Respect Copyright.

    課程相關連結Course Related Links

    
                

    課程附件Course Attachments

    課程進行中,使用智慧型手機、平板等隨身設備 To Use Smart Devices During the Class

    Yes

    列印