教學大綱 Syllabus

科目名稱:應用貝氏方法

Course Name: Applied Bayesian Methods

修別:選

Type of Credit: Elective

3.0

學分數

Credit(s)

20

預收人數

Number of Students

課程資料Course Details

課程簡介Course Description

This course presents general Bayesian principles and Bayesian computation techniques. It will cover empirical Bayes methods, Bayesian hierarchical models, Markov Chain Monte Carlo methods, and selected topics from Bayesian machine learning.
 

核心能力分析圖 Core Competence Analysis Chart

能力項目說明


    課程目標與學習成效Course Objectives & Learning Outcomes

    Upon successful completion students should be able to formulate Bayesian models and use statistical software for data analysis.
     

    每周課程進度與作業要求 Course Schedule & Requirements

    教學週次Course Week 彈性補充教學週次Flexible Supplemental Instruction Week 彈性補充教學類別Flexible Supplemental Instruction Type

    Tentative schedule:

    「課程主題」、「課程內容與指定閱讀」&「教學活動與作業」、「學習投入時數」
    1.  Introduction to Bayesian inference      read slides & book   3 hrs  
    2.  Empirical Bayes vs fully Bayes           homework 1             3 hrs
    3.  Introduction to Markov Chain              read slides & book   3 hrs
    4.  Markov Chain Monte Carlo                 homework 2             3 hrs
    5.  Markov Chain Monte Carlo                 read slides & book   3 hrs
    6.  Gibbs sampling                                  homework 3              3 hrs
    7.  Gibbs sampling                                  read slides & book    3 hrs
    8.  Convergence diagnosis and rstan      homework 4             3 hrs
    9.  Exam (written)                                  
    10. Deterministic Bayesian appxorimation methods     read slides & papers  3 hrs
    11. Bayesian dynamic models                                       homework 5              3 hrs
    12. Mixture models                                                        read slides & papers 3 hrs
    13. Exam (programming)                     
    14. selected topics                                                         read papers               3 hrs
    15. selected topics                                                         read papers               3 hrs
    16. Project presentation                                                 read papers               3 hrs 
    17. Project presentation                                                 read papers               3 hrs

    For more details on「課程內容與指定閱讀」、「教學活動與作業」,  see handouts

    授課方式Teaching Approach

    70%

    講述 Lecture

    20%

    討論 Discussion

    0%

    小組活動 Group activity

    10%

    數位學習 E-learning

    0%

    其他: Others:

    評量工具與策略、評分標準成效Evaluation Criteria

    1. homework + in-class exercise + discussion 30%
    2. exam (written + programming) 40%
    3. final project 30%
     

    指定/參考書目Textbook & References

    "Bayesian Data Analysis" by Andrew Gelman, John B. Carlin, Hal S. Stern, and Donald B. Rubin.

    已申請之圖書館指定參考書目 圖書館指定參考書查詢 |相關處理要點

    維護智慧財產權,務必使用正版書籍。 Respect Copyright.

    課程相關連結Course Related Links

    none

    課程附件Course Attachments

    課程進行中,使用智慧型手機、平板等隨身設備 To Use Smart Devices During the Class

    需經教師同意始得使用 Approval

    列印