教學大綱 Syllabus

科目名稱:金融計量

Course Name: Financial Econometrics

修別:必

Type of Credit: Required

3.0

學分數

Credit(s)

30

預收人數

Number of Students

課程資料Course Details

課程簡介Course Description

This course is designed to help the students master the econometric tools for analysing the financial data. It covers the basic theories on estimation and inference. The application of econometric methods would focus on the time-series and cross-sectional predictability of asset returns. We will also cover the basic machine learning methods and their application in finance.

核心能力分析圖 Core Competence Analysis Chart

能力項目說明


    課程目標與學習成效Course Objectives & Learning Outcomes

    After finishing this course, the students are expected to be able to apply the econometric methods and conduct an independent empirical research.

    每周課程進度與作業要求 Course Schedule & Requirements

    教學週次Course Week 彈性補充教學週次Flexible Supplemental Instruction Week 彈性補充教學類別Flexible Supplemental Instruction Type

    週次

    Week

    課程主題

    Topic

    教學活動與作業

    Teaching Activities and Homework

    學習投入時間

    Student workload expectation

    課堂講授

    In-class Hours

    課程前後

    Outside-of-class Hours

    1

    Introduction

    Lecture

    3

    0

    2

    Regression fundamentals (I)

    Gow & Ding's Chapter 3-5

    3

    5

    3

    Regression fundamentals (II)

    Gow & Ding's Chapter 3-5

    3

    5

    4

    Capital markets research (I)

    Gow & Ding's Chapter 10-16

    3

    5

    5

    Capital markets research (II)

    Gow & Ding's Chapter 10-16

    3

    5

    6

    Capital markets research (III)

    Gow & Ding's Chapter 10-16

    3

    5

    7

    Midterm exam

    Exam

    3

    10

    8

    Panel data (I)

    Lecture notes

    3

    5

    9

    Panel data (II)

    Lecture notes

    3

    5

    10

    Panel data (III)

    Lecture notes

    3

    5

    11

    Instrumental variables

    Gow & Ding's Chapter 20

    3

    5

    12

    Dimension reduction

    Lecture notes

    3

    5

    13

    Regularization

    Lecture notes

    3

    5

    14

    Machine learning

    Lecture notes

    3

    5

    15

    Project propsal presentation

    Discussion

    3

    5

    16

    Final Exam

    Exam

    3

    10

    授課方式Teaching Approach

    70%

    講述 Lecture

    15%

    討論 Discussion

    15%

    小組活動 Group activity

    0%

    數位學習 E-learning

    0%

    其他: Others:

    評量工具與策略、評分標準成效Evaluation Criteria

    Homework assignment (30%)

    Midterm exam (20%)

    Final exam (20%)

    Final report (30%)

    指定/參考書目Textbook & References

    • Lecture notes
    • Tidy Finance. Link: https://www.tidy-finance.org/r/
    • Gow & Ding (2024). Link: https://iangow.github.io/far_book/

    已申請之圖書館指定參考書目 圖書館指定參考書查詢 |相關處理要點

    維護智慧財產權,務必使用正版書籍。 Respect Copyright.

    課程相關連結Course Related Links

    
                

    課程附件Course Attachments

    課程進行中,使用智慧型手機、平板等隨身設備 To Use Smart Devices During the Class

    No

    列印