教學大綱 Syllabus

科目名稱:計量經濟學(一)

Course Name: Econometrics (I)

修別:選

Type of Credit: Elective

3.0

學分數

Credit(s)

40

預收人數

Number of Students

課程資料Course Details

課程簡介Course Description

Econometrics is a discipline grounded in advanced economic theories and various quantitative methods. It focuses on empirical tasks of analyzing observational data, such as estimating causal effects, testing economic theories, evaluating and implementing government and business policies, and forecasting key macroeconomic indicators.

Econometrics has become indispensable for economists conducting serious empirical research. This one-semester course is designed to introduce graduate-level students to well-established econometric tools, particularly regression-based methods for handling cross-sectional data.   

The course will cover the following topics:

Course introduction: modern Econometrics and causal inference

Multiple regression analysis: estimation 

Multiple regression analysis: inference 

Multiple regression analysis: OLS asymptotics

Multiple regression analysis: further issues

Multiple regression analysis with qualitative information

Heteroskedasticity

Instrumental variables estimation and two stage least squares

Limited dependent variable Models and sample selection corrections

 

Instructional Method: Lecture

 

Course Requirements:

Students should have a solid understanding of undergraduate-level statistics, calculus, linear algebra, and economics before enrolling in the course. Regular attendance at lectures and completion of assigned exercises are required.

Please note that the course will begin with multiple regression analysis rather than simple regression analysis. Therefore, students who are not familiar with simple regression analysis (or the relevant statistical tools) are encouraged to review these concepts independently to ensure they can keep up with the course material.

核心能力分析圖 Core Competence Analysis Chart

能力項目說明


    課程目標與學習成效Course Objectives & Learning Outcomes

    By the end of the course, students will be equipped with the econometric and statistical techniques necessary for empirical analysis, which will be invaluable in their future careers, whether in industry or academia.  

    每周課程進度與作業要求 Course Schedule & Requirements

    教學週次Course Week 彈性補充教學週次Flexible Supplemental Instruction Week 彈性補充教學類別Flexible Supplemental Instruction Type
    周次 課程主題 課程內容與指定閱讀 教學活動與作業   學習投入時數
    1 Course Introduction 課程投影片 簡介課程: 現代計量經濟學及因果推論   1.5
    2 Multiple regression analysis: estimation 課程投影片, Chapters 3  of Wooldridge (2019) 多變量迴歸分析: 估計   4
    3 Multiple regression analysis: estimation 課程投影片, Chapters 3  of Wooldridge (2019) 多變量迴歸分析: 估計   4
    4 Multiple regression analysis: inference 課程投影片, Chapters 4  of Wooldridge (2019) 多變量迴歸分析: 統計推論   4
    5 Multiple regression analysis: inference 課程投影片, Chapters 4  of Wooldridge (2019) 多變量迴歸分析: 統計推論   4
    6 Multiple regression analysis: OLS asymptotics 課程投影片, Chapters 5  of Wooldridge (2019) 多變量迴歸分析: 漸進性質   4
    7 Multiple regression analysis: further issues 課程投影片, Chapters 6  of Wooldridge (2019) 多變量迴歸分析: 其他課題   4
    8 Multiple regression analysis with qualitative information 課程投影片, Chapters 7  of Wooldridge (2019) 多變量迴歸分析: 質性資料   4
    9 Midterm exam week Midterm exam   3
    10 Heteroskedasticity 課程投影片, Chapters 8  of Wooldridge (2019) 異質性   4
    11 Heteroskedasticity 課程投影片, Chapters 8  of Wooldridge (2019) 異質性   4
    12 Instrumental variables estimation and two stage least squares 課程投影片, Chapters 15  of Wooldridge (2019) 工具變數及二階段OLS法   4
    13 Instrumental variables estimation and two stage least squares 課程投影片, Chapters 15  of Wooldridge (2019) 工具變數及二階段OLS法   4
    14 Limited dependent variable Models and sample selection corrections 課程投影片, Chapters 17  of Wooldridge (2019) 限制性因變數模型及樣本選擇調整   4
    15 Limited dependent variable Models and sample selection corrections 課程投影片, Chapters 17 of Wooldridge (2019) 限制性因變數模型及樣本選擇調整   4
    16 Final Exam week  Final exam   3
    17 自主總整學習 自主總整學習    
    18 自主總整學習 自主總整學習    

     

    授課方式Teaching Approach

    100%

    講述 Lecture

    0%

    討論 Discussion

    0%

    小組活動 Group activity

    0%

    數位學習 E-learning

    0%

    其他: Others:

    評量工具與策略、評分標準成效Evaluation Criteria

    Exercises (30%), midterm exam (30%), final exam (30%), attendance at lectures (10%).

    Exercises will be assigned after each lecture topic ends. Some of these exercises will involve computer-based tasks, and solutions will be provided in Python code. However, students are welcome to use any statistical software of their choice to complete the assignments.

    Requirements for exercises:
    No late submission is allowed (no matter what reasons you have).
    - For computer exercises, relevant program codes should be attached.
    - Submit your exercises on the Moodle.

    指定/參考書目Textbook & References

    Required textbook:

    Wooldridge, Jeffrey M. (2019): "Introductory Econometrics: A Modern Approach", 7th Edition, Cengage Learning.
    The main course will follow chapters 3 - 8, 15 and 17 of the book.

    已申請之圖書館指定參考書目 圖書館指定參考書查詢 |相關處理要點

    維護智慧財產權,務必使用正版書籍。 Respect Copyright.

    課程相關連結Course Related Links

    
                

    課程附件Course Attachments

    課程進行中,使用智慧型手機、平板等隨身設備 To Use Smart Devices During the Class

    需經教師同意始得使用 Approval

    列印