教學大綱 Syllabus

科目名稱:多變量分析及其應用

Course Name: Multivariate analysis and its applications

修別:選

Type of Credit: Elective

3.0

學分數

Credit(s)

20

預收人數

Number of Students

課程資料Course Details

課程簡介Course Description

Multivariate statistical analysis refers to statistical techniques that are used to study the joint behavior of many variables at the same time. 

核心能力分析圖 Core Competence Analysis Chart

能力項目說明


    課程目標與學習成效Course Objectives & Learning Outcomes

    In this two-semester course, we'll give the multivariate statistical techniques such as multiple linear regression models, principle component analysis, factor analysis, canonical analysis and discrimination and classification and their theory behind these techniques. In addition, students will also learn how to use statistical software to analyze the data. It is expected that students should be able to determine and use the appropriate technique to answer and explain the multivariate data they are given.

    每周課程進度與作業要求 Course Schedule & Requirements

    教學週次Course Week 彈性補充教學週次Flexible Supplemental Instruction Week 彈性補充教學類別Flexible Supplemental Instruction Type

    Week            Topic                               Content and Reading                  Teaching Activities             Student workload                                                                                           Assignment                               and Homework                _______________________________________________________________________________________________

                                                                                                                                                     Homework will be         Students are  expected                                                                                                                                                                                              assigned in the class        to  spend 9 hours/week                                                                  .          .                                                                                                                                                     outside of class

     

    (請填寫每週次的授課內容及授課方式)

    週次

    授課內容

    學生指定閱讀資料

    授課方式

    1

    Review of multivariate inference

    The multivariate normal distribution

    遠距

    2

    Principal Components 1

    Population principal components

    遠距

    3

    Principal Components 2

    Summarizing sample variation by principal components

    遠距

    4

    Principal Components 3

    Graphing the principal components.

    遠距

    5

    Principal Components 4

    Large sample inferences

    遠距

    6

    Factor Analysis 1

    The orthogonal factor model

    遠距

    7

    National Holiday

     

     

    8

    Factor Analysis 2

    Methods of estimation

    遠距

    9

    Factor Analysis 3

    Factor rotation

    遠距

    10

    Factor Analysis 4

    Factor scores and a strategy for factor analysis

    遠距

    11

    Canonical correlation analysis 1

    Canonical variates and correlations. Interpreting the population canonical variables

    遠距

    12

    Canonical correlation analysis 2

    Sample canonical variates and correlations

    遠距

    13

    Discrimination and classification 1

    Classification with normal populations, evaluating classification functions

    遠距

    14

    Discrimination and classification 2

    Fisher method for discriminating among several populations

    遠距

    15

    Clustering, distance methods, and ordination 1

    Similarity measures

    遠距

    16

    Clustering, distance methods, and ordination 2

    Clustering methods

    遠距

    17

    Project 1

     

    遠距

    18

    Project 2

     

    遠距

     

     

    授課方式Teaching Approach

    50%

    講述 Lecture

    20%

    討論 Discussion

    0%

    小組活動 Group activity

    30%

    數位學習 E-learning

    0%

    其他: Others: 除了另行宣布外,本課程各節課,皆為遠距教學。 Office hours 第二週以後亦透過線上。

    評量工具與策略、評分標準成效Evaluation Criteria

    1. class participation:  20%

    2. home work: 40%

    3. projects: 40%

     

    All are subject to change.

    指定/參考書目Textbook & References

    Applied Mltivariate Statistical Analysis (2014) by Johnson and Wichern 6 th edition

     

    Reference book: Applied Linear Regression Models (2004) by Kutner, Nachtssheim, and Neter 4th edition

     

    已申請之圖書館指定參考書目 圖書館指定參考書查詢 |相關處理要點

    維護智慧財產權,務必使用正版書籍。 Respect Copyright.

    課程相關連結Course Related Links

    
                

    課程附件Course Attachments

    課程進行中,使用智慧型手機、平板等隨身設備 To Use Smart Devices During the Class

    需經教師同意始得使用 Approval

    列印