週次
|
課程內容與指定閱讀
|
教學活動與課前、課後作業
|
學生學習投入時間
|
1
|
(2/22) Introduction to the course and Patent Specification
|
宋老師與許老師共同授課
To introduce the patent specification of U.S. Pat. US 6,637,447
|
3 hrs
|
2
|
(2/29) Introduction to Patent Big Data
|
宋老師授課
To introduce the Bibliographic data, text, and file wrapper of U.S. Pat. US 10,375,357
Reading Assignments:
1. WIPO, The Role of Patent Information in Supporting Innovation
2. Ch3. Understanding Patent Data
3. Ch4. Claims, “Legally, Less is More”
Foundation of Statistics I:
台大開放式課程「統計與生活」
單元一:資料哪裡來(一)
單元二:資料哪裡來(二)
單元三:實驗設計資料(一)
|
15 hrs
|
3
|
(3/7) Patent Search and Patent Data Retrieval
|
宋老師授課
To introduce how to conduct patent searches and retrieve patent data
Reading Assignments:
1. WIPO, WIPO Guide to using Patent Information
2. WIPO, Patent Information and Development
Foundation of Statistics II:
台大開放式課程「統計與生活」
單元四:實驗設計資料(二)
單元五:資料之圖表展示
單元六:資料之敘述
|
15 hrs
|
4
|
(3/14) Patent Citations Analysis
|
宋老師授課
To introduce the patent citations analysis
Reading Assignments:
Ch. 6: Patent Citations Analysis
Foundation of Statistics III:
台大開放式課程「統計與生活」
單元七:兩個變數之關係
單元八:機率
單元九:機率模型
|
|
5
|
(3/21) Bibliographic-based Patent Analysis for Strategic Technology Management (1)
|
宋老師授課
To introduce the patent analytics of bibliographic data
Reading Assignment:
Ernst, H. (2003). Patent information for strategic technology management. World patent information, 25(3), 233-242.
Foundation of Statistics IV:
台大開放式課程「統計與生活」
單元十:模擬
單元十一:期望值
單元十二:信賴區間
|
15 hrs
|
6
|
(3/28) Bibliographic-based Patent Analysis for Strategic Technology Management (2)
|
宋老師授課
To introduce the patent analytics of bibliographic data
Reading Assignments:
Sick, N., Merigó, J. M., Krätzig, O., & List, J. (2021). Forty years of World Patent Information: A bibliometric overview. World Patent Information, 64, 102011.
Foundation of Statistics V:
台大開放式課程「統計與生活」
單元十三:顯著性檢定
單元十四:統計推論的應用
單元十五:交叉列表與卡方檢定
|
15 hrs
|
7
|
(4/4) 清明節
|
放假
|
|
8
|
(4/11) Semantic-based Patent Analysis for Strategic Technology Management (1)
|
宋老師授課
To introduce the patent analytics of textual data
Reading Assignments:
Bonino, D., Ciaramella, A., & Corno, F. (2010). Review of the state-of-the-art in patent information and forthcoming evolutions in intelligent patent informatics. World Patent Information, 32(1), 30-38.
AI for Business:
政大磨課師「商業人工智慧導論」簡士鎰老師
單元一:AI與大數據導論
|
20 hrs
|
9
|
(4/18) Semantic-based Patent Analysis for Strategic Technology Management (2)
|
宋老師授課
To introduce the patent analytics of textual data
Reading Assignments:
1. Chen, L., Xu, S., Zhu, L., Zhang, J., Lei, X., & Yang, G. (2020). A deep learning based method for extracting semantic information from patent documents. Scientometrics, 125(1), 289-312.
2. Aristodemou, L., & Tietze, F. (2018). The state-of-the-art on Intellectual Property Analytics (IPA): A literature review on artificial intelligence, machine learning and deep learning methods for analysing intellectual property (IP) data. World Patent Information, 55, 37-51.
AI for Business:
政大磨課師「商業人工智慧導論」簡士鎰老師
單元二:資料處理、資料探勘、機器學習、模型結果評估
|
20 hrs
|
10
|
(4/25) Application of Patent Analytics on the Determination and Prediction of Patent Validity
|
宋老師授課
Application of Patent Analytics on the Determination and Prediction of Patent Validity
Reading Assignments:
1. Arts, S., Cassiman, B., & Gomez, J. C. (2018). Text matching to measure patent similarity. Strategic Management Journal, 39(1), 62-84.
2. Raghupathi, V., Zhou, Y., & Raghupathi, W. (2018). Legal decision support: Exploring big data analytics approach to modeling pharma patent validity cases. IEEE Access, 6, 41518-41528.
AI for Business:
政大磨課師「商業人工智慧導論」簡士鎰老師
單元三:電腦視覺、自然語言處理
|
20 hrs
|
11
|
(5/2) Application of Patent Analytics on Innovation Management and Strategy
|
宋老師授課
Application of Patent Analytics on Innovation Management and Strategy
Reading Assignments:
1. Aristodemou, L., Tietze, F., Athanassopoulou, N., & Minshall, T. (2017). Exploring the future of patent analytics: a technology roadmapping approach.
2. Guderian, C. C., Bican, P. M., Riar, F. J., & Chattopadhyay, S. (2021). Innovation management in crisis: patent analytics as a response to the COVID‐19 pandemic. R&D Management, 51(2), 223-239.
Python for Machine Learning:
政大磨課師「應用機器學習與Python」林怡伶老師
單元一:Python入門
|
20 hrs
|
12
|
(5/9) Application of Patent Analytics on Technology Forecast and Industry Analysis (1)
|
許老師授課
Ch. 9: Is Innovation Design-or Technology-Driven? Dyson
Python for Machine Learning:
政大磨課師「應用機器學習與Python」林怡伶老師
單元二:線性迴歸、決策樹
|
15 hrs
|
13
|
(5/16) Application of Patent Analytics on Technology Forecast and Industry Analysis (2)
|
許老師授課
Ch. 10: Predict Strategic Pivot Points: Bose
Python for Machine Learning:
政大磨課師「應用機器學習與Python」林怡伶老師
單元三:向量機、模型優化
|
15 hrs
|
14
|
(5/23) Application of Patent Analytics on Technology Forecast and Industry Analysis (3)
|
許老師授課
Ch. 11: Who Drives Innovation? Apple
Python for Machine Learning:
政大磨課師「應用機器學習與Python」林怡伶老師
單元四:分群、資料降維、關聯分析
|
15 hrs
|
15
|
(5/30) Application of Patent Analytics on Technology Forecast and Industry Analysis (4)
|
許老師授課
Ch. 12: Knowledge Acquisition and Assimilation After M&As: Adobe
Python for Machine Learning:
政大磨課師「應用機器學習與Python」林怡伶老師
單元五:網路爬蟲
|
15 hrs
|
16
|
(6/6) Application of Patent Analytics on Technology Forecast and Industry Analysis (5)
|
許老師授課
Ch. 13: Learn to Build Design Innovation Team: Samsung Versus LG
Python for Machine Learning:
政大磨課師「應用機器學習與Python」林怡伶老師
單元六:自然語言處理
|
15 hrs
|
17
|
(6/13) 期末報告課堂討論
|
期末報告,每位報告40分鐘,問答與講評10分鐘
|
10 hrs
|
18
|
(6/20) 期末回顧與分享
|
期末回顧與分享
|
10 hrs
|
|
|
|
|