教學大綱 Syllabus

科目名稱:精算數學專題

Course Name: Actuarial Mathematics Seminar

修別:必

Type of Credit: Required

3.0

學分數

Credit(s)

10

預收人數

Number of Students

課程資料Course Details

課程簡介Course Description

Aims: Gain a through understanding of the followings:
1.basic pricing of actuarial mathematics
2.the application of the dynamic mortality model
3.the application of Levy process in actuarial science
4.the application of the longevity risk.
5.modeling and reserving the guarantee liabilities (GMAB, GMDB, GMWB,… ).
6.static and dynamic hedging
7.the properties of the Markowitz portfolio selection model.
8.evaluate the risk and return characteristics of guaranteed investment
9.apply the concept of Multivariate Jump Diffusion Models to asset allocation
10.    Identify and apply portfolio management techniques to the ongoing investment management of financial institution and pension fund assets
11.    apply approximation method to the topic of asset allocation,..,etc.
12.    modeling the mortality model.

核心能力分析圖 Core Competence Analysis Chart

能力項目說明


    課程目標與學習成效Course Objectives & Learning Outcomes

    Aims: Gain a through understanding of the followings:
    1.basic pricing of actuarial mathematics
    2.the application of the dynamic mortality model
    3.the application of Levy process in actuarial science
    4.the application of the longevity risk.
    5.modeling and reserving the guarantee liabilities (GMAB, GMDB, GMWB,… ).
    6.static and dynamic hedging
    7.the properties of the Markowitz portfolio selection model.
    8.evaluate the risk and return characteristics of guaranteed investment
    9.apply the concept of Multivariate Jump Diffusion Models to asset allocation
    10.    Identify and apply portfolio management techniques to the ongoing investment management of financial institution and pension fund assets
    11.    apply approximation method to the topic of asset allocation,..,etc.
    12.    modeling the mortality model.

    每周課程進度與作業要求 Course Schedule & Requirements

    教學週次Course Week 彈性補充教學週次Flexible Supplemental Instruction Week 彈性補充教學類別Flexible Supplemental Instruction Type

    週次

    Week

    課程主題

    Topic

    課程內容與指定閱讀

    Content and Reading Assignment

    教學活動與作業

    Teaching Activities and Homework

    學習投入時間

    Student workload expectation

    課堂講授

    In-class Hours

    課程前後

    Outside-of-class Hours

    1

    基礎精算數學介紹I

    課程提供

    講授與問題討論

    3

    4

    2

    基礎精算數學介紹II

    課程提供

    講授與問題討論

    3

    4

    3

    退休金精算報告I

    課程提供

    講授與問題討論

    3

    4

    4

    退休金精算報告II

    課程提供

    講授與問題討論

    3

    4

    5

    保險商品計算基礎I

    課程提供

    講授與問題討論

    3

    4

    6

    保險商品計算基礎II

    課程提供

    講授與問題討論

    3

    4

    7

    Proposal Presentation

    課程提供

    報告

    3

    4

    8

    機器學習I

    課程提供

    講授與問題討論

    3

    4

    9

    機器學習II

    課程提供

    講授與問題討論

    3

    4

    10

    機器學習III

    課程提供

    講授與問題討論

    3

    4

    11

    機器學習IV

    課程提供

    講授與問題討論

    3

    4

    12

    機器學習V

    課程提供

    講授與問題討論

    3

    4

    13

    高齡長照議題I

    課程提供

    講授與問題討論

    3

    4

    14

    高齡長照議題II

    課程提供

    講授與問題討論

    3

    4

    15

    高齡長照議題III

    課程提供

    講授與問題討論

    3

    4

    16

    高齡長照議題IV

    課程提供

    講授與問題討論

    3

    4

    17

    高齡長照議題V

    課程提供

    講授與問題討論

    3

    4

    18

    Final Presetation

    課程提供

    報告

    3

    4

    授課方式Teaching Approach

    50%

    講述 Lecture

    30%

    討論 Discussion

    10%

    小組活動 Group activity

    10%

    數位學習 E-learning

    0%

    其他: Others:

    評量工具與策略、評分標準成效Evaluation Criteria

    Grades:

    Presentation 40%
    Final project: 60 %
     

    指定/參考書目Textbook & References

    Reference papers:

    1.    Biffis, E., 2005. Affine Processes for Dynamic Mortality and Actuarial Valuations. Insurance: Mathematics and economics 37, 443-468.Capozza, D. R., Kazarian, D., Thomson, T. A., 1998.
    2.    Brouhns, N., Denuit, M., Vermunt, J. K., 2002. A Poisson Log-Bilinear Regression Approach to the Construction of Projected Life Tables. Insurance: Mathematics and Economics 31, 373-393.
    3.    Cairns, A. J. G., Blake, D., Dowd, K., 2006. A Two-Factor Model for Stochastic Mortality with Parameter Uncertainty: Theory and Calibration. The Journal of Risk and Insurance 73, 687-718.
    4.    Cairns, A. J. G., Blake, D., Dowd, K., Coughlan, G. D., Epstein, D., Ong, A., Balevich, I., 2009. A Quantitative Comparison of Stochastic Mortality Models Using Data From England and Wales and the United States. North American Actuarial Journal 13, 1-35.
    5.    Chen, H., Cox, S. H., 2009. Modeling Mortality with Jumps: Applications to Mortality Securitization. The Journal of Risk and Insurance 76, 727-751.
    6.    Haberman, S., Renshaw, A. E., 2009. On Age-Period-Cohort parametric motality rate projections. Insurance: Mathematics and Economics 45, 255-270.
    7.    Lee, R., 2000. The Lee-Carter Method for Forecasting Mortality, with Various Extensions and Applications. North American Actuarial Journal 4, 80-93.
    8.    Li. S. H., Chan, W. S., 2007. The Lee-Carter Model for Forecasting Mortality, Revisited. North American Actuarial Journal 11, 68-89.
    9.    Renshaw, A. E., Haberman, S., 2003. Lee-Carter Mortality Forecasting with Age-Specific Enhancement. Insurance: Mathematics and Economics 33, 255-272.
    10.    The Conditional Probability of Mortgage Default. Real Estate Economics 26 (3), 359-389.
    11.    Barndorff-Nielsen, O.E., 1998. Processes of normal inverse Gaussian type. Finance and Stochastics 2, 41–68.
    12.    Carr, P., Wu, L., 2003. Finite moment log stable process and option pricing. Journal of Finance 58, 753–777.
    13.    Chen, Ming-Chi, Chia-Chien Chang, Shih-Kuei Lin, David Shyu, 2009. Estimation of Housing Price Jump Risks and Impact on the Valuation of Mortgage Insurance Contacts. Journal of Risk and Insurance , forthcoming
    14.    Denuit, M., Devolder, P., Goderniaux, A.C., 2007. Securitization of longevity risk: pricing survivor bonds with wang transform in the Lee-carter framework. The Journal of Risk and Insurance 74 (1), 87-113.
    15.    Eraker, B., Johannes, M., Poison, N., 2003. The impact of jumps in equity index volatility and returns. Journal of Finance 58 (3), 1269–1300.
    16.    Lee, R. D., Carter, L. R., 1992. Modeling and forecasting U.S. mortality. Journal of the American Statistical Association 87, 659-675.
    17.    Sharp, N. J., Newton, D. P., Duck, P. W., 2008. An Improved Fixed-Rate Mortgage Valuation Methodology with Interacting Prepayment and Default Options. Journal of Real Estate and Financial Economics 36, 307–342.
    18.    Campbell, J.Y., Viceira, L.M., 2002. Strategic Asset Allocation: Portfolio Choice for Long-term Investors. Oxford: Oxford University Press,
    19.    Chiu, M. C., Li, D., 2006. Asset and liability management under a continuous-time mean–variance optimization framework. Insurance: Mathematics and Economics 39, 330–355.
    20.    Emms, P., Haberman, S., 2007. Asymptotic and numerical analysis of the optimal investment strategy for an insurer. Insurance: Mathematics and Economics 40, 113–134.
    21.    Sherris, M., 2006. Solvency, capital allocation, and fair rate of return in insurance. The Journal of Risk and Insurance 73(1), 71-96.
    22.    Wang, Z., Xia, J., Zhang, L., 2007. Optimal investment for an insurer: The martingale approach. Insurance: Mathematics and Economics 40, 322–334.
    23.    Lai, S.L., Frees, E., 1995. Examining changes in reserves using stochastic interest models. Journal of Risk and Insurance 62, 535-574.
    24.    Szymanoski, E. J., 1994. Risk and the Home Equity Conversion Mortgage. Journal of American Real Estate and Urban Economics Association 22(2), 347-366.
    25.    Lee, R., 2000. The Lee-Carter method for forecasting mortality, with various extensions and applications. North American Actuarial Journal 4, 80-93.
    26.    Lee, B. S., Chung, E. C., Kim, Y. H., 2005. Dwelling Age, Redevelopment, and Housing Prices: The Case of Apartment Complexes in Seoul. Journal of Real Estate Finance and Economics 30 (1), 55–80.
    27.    Elena vigna, Steve Haberman, “ Optimal investment strategy for defined contribution pension schemes”, IME 2001 233-262 Campbell, J.Y., Viceira, L.M., 2002.
    28.    Strategic Asset Allocation: Portfolio Choice for Long-term Investors. Oxford: Oxford University Press,.
    29.    Chiu, M. C., Li, D., 2006. Asset and liability management under a continuous-time mean–variance optimization framework. Insurance: Mathematics and Economics 39, 330–355.
    30.    Battocchio, P., Menoncin, F. and Scaillet O. 2007 Optimal asset allocation for pension funds under mortality risk during the accumulation and decumulation phases, Annals of Operations Research, 152(1): 141-165
    31.    Gerrard, R., Habberman, S. and Vigna, E. (2006) The management of decumulation risks in a defined contribution pension plan. North American Actuarial Journal 10(1):84-110
    32.    Wilkie, A.D., 1995. More on a Stochastic Model for Actuarial Use. British Actuarial Journal 1(V), 777-964.
    33.    Wang, Z., Xia, J., Zhang, L., 2007. Optimal investment for an insurer: The martingale approach. Insurance: Mathematics and Economics 40, 322–334.
    34.    Sherris, M., 2006. Solvency, capital allocation, and fair rate of return in insurance. The Journal of Risk and Insurance 73(1), 71-96
    35.    Huang, H.C., Cairns, A. J. G., 2006. On the control of defined-benefit pension plans. Insurance: Mathematics and Economics 38, 113-131.
    36.    Emms, P., Haberman, S., 2007. Asymptotic and numerical analysis of the optimal investment strategy for an insurer. Insurance: Mathematics and Economics 40, 113–134
    37.    Elena vigna, Steve Haberman, “ Optimal investment strategy and risk measures in defined contribution pension schemes”, IME 2002 35-69
    38.    Jean-Francois Boulier etc. “Optimal management under stochastic interest rates: the case of a protected defined contribution pension fund”, IME 2001, 173-189
    39.    Richard J. Rendleman, Jr. “ Option Investing from a risk-return perspective”, the journal of portfolio management, May 1999, p109
    40.    David Blake, Andrew Cairns, “Pensionmetrics: stochastic pension plan design and value at risk during the accumulation phase”, IME 29, 2001, 187-215
    41.    Papers in http://www.pensions-institute.org/papers.html

    已申請之圖書館指定參考書目 圖書館指定參考書查詢 |相關處理要點

    維護智慧財產權,務必使用正版書籍。 Respect Copyright.

    課程相關連結Course Related Links

    課程中指示

    課程附件Course Attachments

    課程進行中,使用智慧型手機、平板等隨身設備 To Use Smart Devices During the Class

    需經教師同意始得使用 Approval

    列印