教學大綱 Syllabus

科目名稱:新型學習演算法

Course Name: New Learning Algorithms

修別:選

Type of Credit: Elective

3.0

學分數

Credit(s)

15

預收人數

Number of Students

課程資料Course Details

課程簡介Course Description

The course objectives are the in-depth discussions on issues regarding developing new learning algorithms of artificial Neural Networks on the infrastructure of PyTorch/TensorFlow and GPUs.

核心能力分析圖 Core Competence Analysis Chart

能力項目說明


    課程目標與學習成效Course Objectives & Learning Outcomes

    The course objectives are the in-depth discussions on issues regarding developing new learning algorithms of artificial Neural Networks on the infrastructure of PyTorch/TensorFlow and GPUs. Particularly, we will study the PyTorch/TensorFlow framework that enables its programs performing parallel computations on GPU. Students will learn from the practice on developing new learning algorithms of artificial Neural Networks on the infrastructure of PyTorch/TensorFlow and GPUs. At the end of this course, students should gain: (1) the general knowledge on artificial neural networks methodologies, algorithms and implementation, and (2) the hands-on algorithm development experience on programs with PyTorch/TensorFlow and GPU.

    每周課程進度與作業要求 Course Schedule & Requirements

    教學週次Course Week 彈性補充教學週次Flexible Supplemental Instruction Week 彈性補充教學類別Flexible Supplemental Instruction Type

    週次

    課程內容與指定閱讀

    教學活動與課前、課後作業

    學生每週學習投入時間

    (含課堂教學時數)

    1

    Hardware and Software (1)

    講義 / 閱讀 Stanford cs231n 2021 年版 Lecture 6 Hardware and Software、做作業

    8 hrs/

     

    2

    Hardware and Software (2)

    講義 / 閱讀 Stanford cs231n 2021 年版 Lecture 6 Hardware and Software、做作業

    3

    Training Neural Networks, Part 1

    講義 / 閱讀 Stanford cs231n 2021 年版 Lecture 7 Training Neural Networks, Part 1、做作業

    4

    Training Neural Networks, Part 2

    講義 / 閱讀 Stanford cs231n 2021 年版 Lecture 8 Training Neural Networks, Part 2、做作業

    5

    algorithm and BP

    講義、做作業

    6

    Learning goals and weight-tuning

    講義、做作業

    7

    Extra stopping criteria and an introduction of overfitting

    講義、做作業

    8

    Extra stopping criteria and an introduction of overfitting

    做作業  

     

     

    9

    Overfitting -- regularizing

    講義、做作業

    10

    Overfitting – network-tuning

    講義、做作業

    11

    Learning dilemma -- isolating with ReLU

    講義、做作業

    12

    Learning dilemma -- analogizing with ReLU for binary-number inputs

    講義、做作業

    13

    Learning dilemma -- analogizing with ReLU for real-number inputs

    講義、做作業

    14

    The learning sequence and the initialization

    講義、做作業

    15

    New learning algorithms & AI application experiments

    講義、做作業

    16

    The validation experiment

    講義、做作業

    17

    Final project report

     

    18

    Final project report

     

    授課方式Teaching Approach

    50%

    講述 Lecture

    20%

    討論 Discussion

    20%

    小組活動 Group activity

    10%

    數位學習 E-learning

    0%

    其他: Others:

    評量工具與策略、評分標準成效Evaluation Criteria

    Weekly meeting attendance (1% x 18) 18%

    Meeting participation 36%

    Group peer evaluation form 6%

    Term project deliverable 40%

    Total 100%

    指定/參考書目Textbook & References

    TBA

    已申請之圖書館指定參考書目 圖書館指定參考書查詢 |相關處理要點

    維護智慧財產權,務必使用正版書籍。 Respect Copyright.

    課程相關連結Course Related Links

    None

    課程附件Course Attachments

    課程進行中,使用智慧型手機、平板等隨身設備 To Use Smart Devices During the Class

    Yes

    列印