教學大綱 Syllabus

科目名稱:時間數列分析

Course Name: Time Series Analysis

修別:選

Type of Credit: Elective

3.0

學分數

Credit(s)

20

預收人數

Number of Students

課程資料Course Details

課程簡介Course Description

The objective of this course is to equip students with forecasting techniques and knowledge on statistical methods for analyzing time series data.

 

核心能力分析圖 Core Competence Analysis Chart

能力項目說明


    課程目標與學習成效Course Objectives & Learning Outcomes

    The topics include ACF and PACF functions, ARIMA processes, best linear prediction, model building and model selection, frequency domain analysis, GARCH and Stochastic Volatility models, VAR models, and other multivariate time series models.

    每周課程進度與作業要求 Course Schedule & Requirements

    教學週次Course Week 彈性補充教學週次Flexible Supplemental Instruction Week 彈性補充教學類別Flexible Supplemental Instruction Type

     

    週次

    Week

    課程主題

    Topic

    課程內容與指定閱讀

    Content and Reading Assignment

    教學活動與作業

    Teaching Activities and Homework

    學生學習投入時間

    Student workload expectation

    課堂講授

    In-class Hours

    課程前後

    Outside-of-class Hours

    1

    (Feb. 22)

    Introduction

    (S&S, 2016) Chapter 1

     Lecture

    3

    2

    2

    (Feb. 29)

    ACF and PACF functions

    (S&S, 2016) Chapter 1

     Lecture

    3 2

    3

    (Mar. 7)

    ACF and PACF functions; AR(p)

    (S&S, 2016) Chapter 3

     Lecture

     HW

    3

    7

    4

    (Mar. 14)

    MA(q) process

    (S&S, 2016) Chapter 3

     Lecture

     R lab

    3

    2

    5

    (Mar. 21)

    ARIMA processes

    (S&S, 2016) Chapter 3

     Lecture

    3

    2

    6

    (Mar. 28)

    Midterm Exam 1

    SARIMA processes

    (S&S, 2016) Chapter 3

     Lecture

    3

    2

    7

    (Apr. 4)

    School Holiday

     

     

     

     

    8

    (Apr. 11)

    model building and model selection

    (S&S, 2016) Chapter 3

     Lecture

    3

    7

    9

    (Apr. 18)

    model building and model selection: R lab

     (S&S, 2016) Chapter 3 and 4

     R lab and HW

    3

    3

    10

    (Apr. 25)

    frequency domain analysis

     (S&S, 2016) Chapter 4

     Lecture

    3

    2

    11

    (May 2)

    Real data presentation

     

       Presentation

    3

    10

    12

    (May 9)

    ARCH and GARCH models

    (Tsay, 2012)  Chapter 4

    Lecture

     R lab

    3

    2

    13

    (May 16)

    Stochastic Volatility models and VAR models

    (Tsay, 2014)  Chapter 2 and 4

     Lecture

     HW

    3 2

    14

    (May 23)

    Midterm Exam 2

     

     

    3

    2

    15

    (May 30)

    multivariate time series models

    (Tsay, 2014)  Chapter 2 ~ 7

     Lecture

    3

    2

    16

    (June 6)

    Real data analysis

     

     

    3

    10

    17

    (June 13)

    final project presentation (part 1)

     

     oral presentation

    3

    10

    18

    (June 20)

    final project presentation (part 2)

     

     oral presentation

    3

    3

     

    授課方式Teaching Approach

    80%

    講述 Lecture

    0%

    討論 Discussion

    20%

    小組活動 Group activity

    0%

    數位學習 E-learning

    0%

    其他: Others:

    評量工具與策略、評分標準成效Evaluation Criteria

    Midterm Exam (twice): 40%

    Final Project: 35%

    Homework: 10%

    Attendance/Participation: 15% (出席5~10%、期末報告參與討論5~10%)

    All the data analysis (homework and final project) will be implemented using software R.

     

     

    指定/參考書目Textbook & References

    Reference (參考書目):
    1. Shumway and Sto ffer. (2016). Time Series Analysis and its Applications with R Examples. 
    2. Tsay. (2012). An Introduction to Analysis of Financial Data with R.
    3. Tsay. (2014). Multivariate Time Series Analysis.

     

    已申請之圖書館指定參考書目 圖書館指定參考書查詢 |相關處理要點

    維護智慧財產權,務必使用正版書籍。 Respect Copyright.

    課程相關連結Course Related Links

    http://moodle.nccu.edu.tw/

    課程附件Course Attachments

    課程進行中,使用智慧型手機、平板等隨身設備 To Use Smart Devices During the Class

    需經教師同意始得使用 Approval

    列印