教學大綱 Syllabus

科目名稱:高等數量方法研討

Course Name: Advanced Quantitative Methods

修別:必

Type of Credit: Required

3.0

學分數

Credit(s)

30

預收人數

Number of Students

課程資料Course Details

課程簡介Course Description

This course will be focused on several main topics covering the application of quantitative and numerical methods in Finance. 

核心能力分析圖 Core Competence Analysis Chart

能力項目說明


    課程目標與學習成效Course Objectives & Learning Outcomes

    The lectures will be oriented in three main categories: the underlying linear algebraic structure leading to dynamic asset pricing; the treatment of convergence especially Cauchy sequences and its various implications including fixed point theorems; and the application of ordinary differential equations to financial and economic problems.

    每周課程進度與作業要求 Course Schedule & Requirements

    教學週次Course Week 彈性補充教學週次Flexible Supplemental Instruction Week 彈性補充教學類別Flexible Supplemental Instruction Type

    With limited time, a selection of topics from the following shall be taught: 

    1    Replication/attainability, and market completeness. A linear algebraic interpretation. System of equations, solvability and invertibility and uniquess. 
    2    Finte one-period market model. Vector spaces. Subspaces. Linear independence and dependence. Redundant and non-redundant assets. Spanning set and basis concepts. Dimensionality and bases. Rank-Nullity theorem. 
    3    Characterizing no-arbitrage. Farka’s lemma. The existence of a state vector. Separting of hyperplanes and Reitz representation. Linearity and strict-positivity of a pricing 
    system. 
    4    Types of Arbitrage opportunities. Dominating trading strategies. Law of One Price. APT leading to the concepts of asset pricing based on: (i), Arrow Debreu state prices; (ii), artificial/risk-neutral probabilities; (iii), pricing kernel/stochastic discount factor. The choice of numeraire and the concept of forward measure. 
    5    Self-financing as an intertemporal budget constraint. Equivalent statements of self-financing. The need for properly defined stochastic integrals. 
    6    The problematic riskless hedge of Black-Scholes(1973). Instantaneous investment gain, and instantaneous portfolio value process. The need for a measure transform. 
    7    Tools for analyzing convergence. Convergence of sequences. Manipulation of limits. Subsequnces. Axiom of bound. Monotonicity and boundedness. 
    8    Monotonic subsequences. Divergence and subsequences. Bolzano-Weierstrass Theorem. General principle for convergence. Cauchy sequences and the concepts of completeness and closure. 
    9    Space of random variables. Inner product spaces. Hibert space and orthogonal projection. Conditional expectations and martingales. 
    10    Contractive mapping and Banach’s Fixed Point Theorem. Generation of Cauchy sequences and convergence of Fixed Point Iterations. 
    11    Linear first order differential equations. Existence and Uniquness theorems. Separable equations. Homogeneous equations. 
    12    Exact equations, sufficient and necessary condition for exactness. Integrating factors. 
    13    Autonomous equations, equilibrium solution, stability, criteria for stability. 
    14    Principle of Superposition. Wronskian. Fundamental set of solutions. Linear independence. Equivalent conditions for fundamental solutions. 
    15    General solutions for non-homogeneous equations with constant coefficients. Method of undetermined coefficients and variation of parameters. 
    16    Improper integrals, definition of Laplace transform. Some basic theorems. Inverse Laplace transform, one-to-one correspondence between function and its Laplace transform.

    授課方式Teaching Approach

    100%

    講述 Lecture

    0%

    討論 Discussion

    0%

    小組活動 Group activity

    0%

    數位學習 E-learning

    0%

    其他: Others:

    評量工具與策略、評分標準成效Evaluation Criteria

    Mid-term Examination 50%
    Final Examination 50%

    指定/參考書目Textbook & References

    已申請之圖書館指定參考書目 圖書館指定參考書查詢 |相關處理要點

    維護智慧財產權,務必使用正版書籍。 Respect Copyright.

    課程相關連結Course Related Links

    
                

    課程附件Course Attachments

    課程進行中,使用智慧型手機、平板等隨身設備 To Use Smart Devices During the Class

    需經教師同意始得使用 Approval

    列印