教學大綱 Syllabus

科目名稱:多變量分析

Course Name: Multivariate Analysis

修別:群

Type of Credit: Partially Required

3.0

學分數

Credit(s)

80

預收人數

Number of Students

課程資料Course Details

課程簡介Course Description

Multivariate analysis is concerned with statistical methods of analyzing data consisting of observations on two or more variables for each individual or unit. The course intends to introduce students to the various topics and concepts in multivariate data analysis, with an emphasis on their applications, interpretation, and practical skills. Principles will be illustrated using the R package, the emphasis being on the interpretation of results.

核心能力分析圖 Core Competence Analysis Chart

能力項目說明


    課程目標與學習成效Course Objectives & Learning Outcomes

    After completing this course, students should be able to:

    • Discuss some mathematical basis and foundations of multivariate data analysis
    • Explain and apply the fundamentals of multivariate data analysis for decision making
    • Use R to analyze multivariate data
    • Effectively communicate the results of multivariate analysis for business data

    每周課程進度與作業要求 Course Schedule & Requirements

    教學週次Course Week 彈性補充教學週次Flexible Supplemental Instruction Week 彈性補充教學類別Flexible Supplemental Instruction Type

    每週學習投入時數約六至八小時(含正課三小時及實習課兩小時)

    不定期作業與報告,配合上課進度與內容。

     

    1 Introduction

    2-3 Chapter 1 Overview of Multivariate Methods

    3-4 Chapter 2 Examining Your Data

    5-6 Chapter 3 Exploratory Factor Analysis

    7-8 Chapter 4 Cluster Analysis

    9 期中考

    10-11 Chapter 6 MANOVA: Extending ANOVA

    12-13 Chapter 7 Multiple Discriminant Analysis

    14-15 Chapter 8 Structural Equation Modeling: An Introduction

    16-17 Chapter 9 SEM: Confirmatory Factor Analysis

    18 期末考

    授課方式Teaching Approach

    70%

    講述 Lecture

    20%

    討論 Discussion

    10%

    小組活動 Group activity

    0%

    數位學習 E-learning

    0%

    其他: Others:

    評量工具與策略、評分標準成效Evaluation Criteria

    Coursework and class participation (30%), midterm exam (35%), and final exam ( and/or report)  (35%).

    指定/參考書目Textbook & References

    Textbook:

    Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (2014). Multivariate data analysis. 8th ed., Pearson new international edition.

     

    References:

    1. Johnson, D. E. (1998) Applied Multivariate Methods for Data Analysis, Pacific Grove, CA: Brook/Cole.
    2. Johnson, R. A. and Wichern, D. W. (1998) Applied Multivariate Statistical Analysis, 4th. ed., Upper Saddle River, NJ: Prentice Hall.
    3. Sharma, S. (1996) Applied Multivariate Techniques, New York: Wiley.

     

    已申請之圖書館指定參考書目 圖書館指定參考書查詢 |相關處理要點

    維護智慧財產權,務必使用正版書籍。 Respect Copyright.

    課程相關連結Course Related Links

    Additional material related to the textbook can be found on the dedicated website: www.mvstats.com

    課程附件Course Attachments

    課程進行中,使用智慧型手機、平板等隨身設備 To Use Smart Devices During the Class

    需經教師同意始得使用 Approval

    列印