Type of Credit: Elective
Credit(s)
Number of Students
本課程旨在介紹圖型識別與深度學習之基本概念,相關技術與最新應用,透過基本原理之說明,數學方法之解析,開發工具之介紹,配合論文之研讀與討論,期使學生能獲得此一領域之最新資訊,從而應用於研究課題。
能力項目說明
教學週次Course Week | 彈性補充教學週次Flexible Supplemental Instruction Week | 彈性補充教學類別Flexible Supplemental Instruction Type |
---|---|---|
Week | 主題與課程內容 | 學習投入時數 |
Week 1 | Introduction | 6 |
Machine Learning Book | ||
A Course in Machine Learning | ||
Week 2 | Overview of Statistical Pattern Recognition | 6 |
Basic Math | ||
Week 3 | Bayesian Decision Rule | 6 |
Bayesian Decision Rule: General Case | ||
Week 4 | Multivariate Normal Distribution | 6 |
Independent Binary Features | ||
Week 5 | Parameter Estimation--Maximum-likelihood and Bayesian Methods | 6 |
Week 6 | Parameter Estimation--Maximum-likelihood and Bayesian Methods | 6 |
PCA | ||
Week 7 | Markov Chains | 6 |
Hidden Markov Models | ||
Week 8 | Non-Parametric Estimation | 6 |
Nearest Neighbor Rule | ||
Week 9 | Linear Discriminant Functions | |
Support Vector Machines | ||
Gradient Descent | ||
Week 10 | Dimensionality Reduction: FLD, LPP,ICA | 6 |
Week 11 | Midterm | 10 |
Week 12 | Similarity Measure | 6 |
Clustering | ||
Feature Selection | ||
Week 13 | Artificial Neural Networks (ANN) | 6 |
Multilayer Neural Networks | ||
Week 14 | Deep Learning: Tutorial | 6 |
Week 15 | Generative AI, XAI | 6 |
Week 16 | Final project preparation | 6 |
Week 17 | Final project preparation | 6 |
Week 18 | Project Presentation | 12 |
http://www.cs.nccu.edu.tw/~whliao/pr2023/ nccucs/nccucs