教學大綱 Syllabus

科目名稱:圖型識別

Course Name: Pattern Recognition

修別:選

Type of Credit: Elective

3.0

學分數

Credit(s)

30

預收人數

Number of Students

課程資料Course Details

課程簡介Course Description

本課程旨在介紹圖型識別與深度學習之基本概念,相關技術與最新應用,透過基本原理之說明,數學方法之解析,開發工具之介紹,配合論文之研讀與討論,期使學生能獲得此一領域之最新資訊,從而應用於研究課題。

核心能力分析圖 Core Competence Analysis Chart

能力項目說明


    課程目標與學習成效Course Objectives & Learning Outcomes

    1. 培養基本之數理與資訊能力
    2. 熟悉圖型識別與機器學習之概念與方法
    3. 熟悉深度學習的基礎概念與工具使用
    4. 利用工具開發相關之應用
    5. 將習得知識應用於相關之研究領域

    每周課程進度與作業要求 Course Schedule & Requirements

    教學週次Course Week 彈性補充教學週次Flexible Supplemental Instruction Week 彈性補充教學類別Flexible Supplemental Instruction Type
    Week 主題與課程內容 學習投入時數
    Week 1 Introduction 6
      Machine Learning Book  
      A Course in Machine Learning  
         
         
    Week 2 Overview of Statistical Pattern Recognition 6
      Basic Math  
         
         
    Week 3 Bayesian Decision Rule 6
      Bayesian Decision Rule: General Case  
         
         
    Week 4 Multivariate Normal Distribution 6
      Independent Binary Features  
         
         
    Week 5 Parameter Estimation--Maximum-likelihood and Bayesian Methods 6
         
         
    Week 6 Parameter Estimation--Maximum-likelihood and Bayesian Methods 6
      PCA  
         
         
    Week 7 Markov Chains 6
      Hidden Markov Models  
         
         
    Week 8 Non-Parametric Estimation 6
      Nearest Neighbor Rule  
         
         
    Week 9 Linear Discriminant Functions  
      Support Vector Machines  
      Gradient Descent  
         
         
    Week 10 Dimensionality Reduction: FLD, LPP,ICA 6
         
         
    Week 11 Midterm 10
       
    Week 12 Similarity Measure 6
      Clustering  
      Feature Selection  
         
         
    Week 13 Artificial Neural Networks (ANN) 6
      Multilayer Neural Networks  
         
    Week 14 Deep Learning: Tutorial 6
         
         
    Week 15 Generative AI, XAI 6
         
         
         
    Week 16 Final project preparation 6
         
         
    Week 17 Final project preparation 6
         
         
    Week 18 Project Presentation 12

     
       

    授課方式Teaching Approach

    85%

    講述 Lecture

    15%

    討論 Discussion

    0%

    小組活動 Group activity

    0%

    數位學習 E-learning

    0%

    其他: Others:

    評量工具與策略、評分標準成效Evaluation Criteria

    • 作業/報告/上課表現 30%
    • 期中考 30%
    • 期末專題 40%

    指定/參考書目Textbook & References

    • Required: Richard O. Duda Peter E. Hart and David G. Stork "Pattern Classification" 2nd Edition John Wiley & Sons 2001. ISBN:0-471-05669-3.
    • Dive into Deep Learning:  https://d2l.ai/
    • Optional: Deep Learning http://www.deeplearningbook.org/

     

    已申請之圖書館指定參考書目 圖書館指定參考書查詢 |相關處理要點

    維護智慧財產權,務必使用正版書籍。 Respect Copyright.

    課程相關連結Course Related Links

    http://www.cs.nccu.edu.tw/~whliao/pr2023/
    nccucs/nccucs

    課程附件Course Attachments

    課程進行中,使用智慧型手機、平板等隨身設備 To Use Smart Devices During the Class

    需經教師同意始得使用 Approval

    列印