教學大綱 Syllabus

科目名稱:網路資料於心理學研究之應用

Course Name: Application of Big Data in Psychology

修別:選

Type of Credit: Elective

3.0

學分數

Credit(s)

10

預收人數

Number of Students

課程資料Course Details

課程簡介Course Description

Since the era of Web 2.0, people have got used to sharing their lives on miscellaneous platforms on the internet, such as bulletin board systems, personal blogs, social media, and so on. The texts, music, and photographs that people post on social media thus become an enormous database of human behaviors for psychologists to study. In this course, I will focus on introducing how to collect data from websites, how to analyze those data in appropriate ways, and how to do text analysis (including sentiment analysis). To these ends, R is a good tool. Therefore, I will also teach R in this class. Of course, it would be even better if students can start learning it on their own before class. There will be home assignments for students every two weeks. Project is optional, however, the students who submit a project by the end of this semester will gain extra bonus points.

 

核心能力分析圖 Core Competence Analysis Chart

能力項目說明


    課程目標與學習成效Course Objectives & Learning Outcomes

    The goals of this course is to introduce how the algorithms/models in maching learning can help psychologists do research with the big data, sepcifically those collected from webpages. Therefore, students after this semester are expected to be able to (1) make their own web crawller to collect online data by reading HTML codes or by calling the API of some applications, (2) do text analysis for textual materials, including making word clouds with word frequency and latent semantic analysis (LSA), (3) do social network analysis such as visualizing the relationships between friends on Facebook, and (4) do visualization for the happenings of events in terms of time and geographic information.

    每周課程進度與作業要求 Course Schedule & Requirements

    教學週次Course Week 彈性補充教學週次Flexible Supplemental Instruction Week 彈性補充教學類別Flexible Supplemental Instruction Type

    Week          Topic                                                      Expected hours for preparing this course outside the classroom


    1                Introduction                                                                   3

    2               Import/Export data in R                                                   3

    3               Processing unstructured and textual data in R                    6

    4               Loops in R (e.g., for, apply, sapply, lapply)                          9

    5               Web crawler for plain texts                                               7

    6               Web Crawler for webpages with CSS                                 9

    7               Data preprocessing and descriptive statistical analysis         7

                     (e.g., word frequency, word clouds, etc)

    8               SVD (singular value decomposition) and LSA (latent             9

                     semantic analysis) I

    9               Midterm Exam

    10              SVD (singular value decomposition) and LSA (latent             9

                     semantic analysis) II

    11              Word segmentation for Chinese documents                         9

    12             Classification with SVM (suport vector machine)                   9

    13             Regression and SVM (suport vector machine)                       9

    14             Stylometric analysis in R                                                    9

    15             Association rules in R                                                        9

    16             Social network on Facebook (or other social media)              9

    17             Oral presentation for project                                               6

    18             Oral presentation for project                                               6

    授課方式Teaching Approach

    80%

    講述 Lecture

    10%

    討論 Discussion

    0%

    小組活動 Group activity

    10%

    數位學習 E-learning

    0%

    其他: Others:

    評量工具與策略、評分標準成效Evaluation Criteria

    The final score consists of two parts: homeworks (70%) and project (30%). Almost every week, we will have a home assignment. The final homework score is the mean of all scores of the home assignments. In addition to homeworks, students are requested to finish a project by the end of semeter. The project objective can be quite flexible, as long as it can demonstrate how well students can conduct a small study of social media.

    指定/參考書目Textbook & References

    References (and more to come)

    Bakshy, E., Messing, S., & Adamic, L. A. (2015). Exposure to ideologically diverse news and opinion on Facebook. Political Science, 348, 1130-1132.

    Centola, D. (2010). The spread of behavior in an online social network experiment. Science, 329, 1194. doi: 10.1126/science.1185231

    Centola, D. (2011). An experimental study of homophily in the adoption of health behavior. Science, 334, 1269-1271.

    Coviello, L., Sohn, Y., Kramer, A. D. I., Marlow, C., Franceschetti, M., Christakis, N. A., & Fowler, J. H. (2014). Detecting emotional contagion in massive social networks. PLOS ONE 9(3): e90315. doi:10.1371/journal.pone.0090315

    Dyevre, A. (2015). Promise and pitfalls of automated text-scaling techniques for the analysis of judical opinions. https://www.researchgate.net/publication/279764826

    Frewen, P. A., Schmittmann, V. D., Bringmann, L. F., & borsboom, D. (2013). Perceived causal relations between anziety, posttraumatic stress and depresion: Extension to moderation, mediation, and network analysis. European Journal of Psychotraumatology, 4: 20656 - http://dx.doi.org/10.3402/ejpt.v4i0.20656

    Harlow, L. L., & Oswald, F. L. (2016). Big data in psychology: Introduction to the special issue. Psychological Methods, 21, 447-457.

    Kern, M. L., Park, G., Eichstaedt, J. C., Schwartz, H. A., Sap, M., Smith, L. K., & Ungar, L. H. (2016, August 8). Gaining Insights From Social Media Language: Methodologies and Challenges. Psychological Methods. Advance online publication. http://dx.doi.org/10.1037/met0000091

    Kern, M. L., Eichstaedt, J. C., Schwartz, H. A., Dziurzynski, L., Ungar, L. H., Stillwell, D. J., ... Seligman, M. E. P. (2014a). The online social self: An open vocabulary approach to personality. Assessment, 21, 158-169. http://dx.doi.org/10.1177/1073191113514104

    Kern, M. L., Eichstaedt, J. C., Schwartz, H. A., Park, G., Ungar, L. H., Stillwell, D. J., . . . Seligman, M. E. P. (2014b). From “Sooo excited!!!” to “So proud”: Using language to study development. Developmental Psychology, 50, 178–188. http://dx.doi.org/10.1037/a0035048

    Kosinski, M., Matz, S., Gosling, S. D., & Stillwell, D. (2015). Facebook as a research tool for the social sciences. American Psychologists, 70, 543-556. doi: 10.1037/a0039210.

    Kosinski, M., Stillwell, D., & Graepel, T. (2013). Private traits and attributes are predictable from digital recores of human behavior. PNAS, 110, 5802-5805.

    Kosinski, M., Wang, Y., Lakkaraju, H., & Leskovec, J. (2016). Ming big data to extract patterns and predict real-life outcomes. Psychological Methods, 21, 493-506.

    Markowetz, A., Blaszkiewicz, K., Montag, C., Switala, C., & Schlaepfer, T. E. (2014). Psycho-informatics: Big data shaping modern psychometrics. Medical Hypotheses, 82, 405-411. 

    Moat, H. S., Curme, C., Avakian, A., kenett, D. Y., Stanley, H. E., & Preis, T. (2013). Quantifying Wikipedia usage patterns before stock market moves. Scientific Report, 3: 1801, doi: 10.1038/srep01801

    Park, G., Schwartz, H. A., Eichstaedt, J. C., Kern, M. L., Kosinski, M., Stillwell, D. J., . . . Seligman, M. E. P. (2015). Automatic personality assessment through social media language. Journal of Personality and Social Psychology, 108, 934 –952. http://dx.doi.org/10.1037/ pspp0000020

    Schmittmann, V. D., Cramer, A. O. J., Waldorp, L. J., & Epskamp, S. (2013). Deconstructing the construct: A network perspective on psychological phenomena. New Ideas in Psychology, 31, 43-53.

    Schwartz, H. A., Eichstaedt, J. C., Kern, M. L., Dziurzynski, L., Ramones, S. M., Agrawal, M., . . . Ungar, L. H. (2013b). Personality, gender, and age in the language of social media: The open-vocabulary approach. PLoS ONE, 8, e73791. http://dx.doi.org/10.1371/journal.pone.0073791

    Schwartz, H. A., Park, G. J., Sap, M., Weingarten, E., Eichstaedt, J. C., Kern, M. L., . . . Ungar, L. H. (2015). Extracting human temporal orientation from Facebook language. In Proceedings of the 2015 Con- ference of the North American chap. of the Association for Computa- tional Linguistics—Human Language Technologies. Stroudsburg, PA: Association for Computational Linguistics. http://dx.doi.org/10.3115/v1/ N15-1044

    Zehner, F., Goldhammer, F., & Salzer, C. (2018). Automatically analyzing text rsponses for exploring gender-specific cognitions in PISA. Large-scal Assessments, in Education, 6, https://doi.org/10.1186/s40536‐018‐0060‐3

    已申請之圖書館指定參考書目 圖書館指定參考書查詢 |相關處理要點

    維護智慧財產權,務必使用正版書籍。 Respect Copyright.

    課程相關連結Course Related Links

    
                

    課程附件Course Attachments

    課程進行中,使用智慧型手機、平板等隨身設備 To Use Smart Devices During the Class

    需經教師同意始得使用 Approval

    列印