教學大綱 Syllabus

科目名稱:分析專題

Course Name: Topics in Analysis

修別:選

Type of Credit: Elective

3.0

學分數

Credit(s)

20

預收人數

Number of Students

課程資料Course Details

課程簡介Course Description

-Topological Vector Spaces:

Basic poperties of topological vector spaces, Separation properties, Linear mappings, Finite-dimensional spaces, Metrization, Boundedness and continuity, Seminorms and local convexity, Quotient spaces, Examples

-Completeness:

Baire category, The Banach-Steinhaus Theorem, The open mapping theorem, The closed graph theorem, Bilinear mappins

-Convexity:

The Hahn-Banach theorems, Weak topologies, Compact convex sets, Vector-valued integration, Holomorphic functions

-Duality in Banach Spaces:

The normed dual of a normed space, Adjoints, Compact operators

-Some Applcations

A continuity theorem, Closed subspaces of L^p-spaces, The range of vector-valued measure, A generalized Stone-Weierstrass theorem, Two interpolation theorems, A fixed point theorem, Haar measure on compact groups, Uncomplemented subspaces

核心能力分析圖 Core Competence Analysis Chart

能力項目說明


    課程目標與學習成效Course Objectives & Learning Outcomes

    本課程之目標在讓學生了解如何利用學過的知識來探討無窮維泛函空間的性質,將其應用到偏微分方程、最佳化理論等相關領域。

    每周課程進度與作業要求 Course Schedule & Requirements

    教學週次Course Week 彈性補充教學週次Flexible Supplemental Instruction Week 彈性補充教學類別Flexible Supplemental Instruction Type
    週次Week 課程主題Course Theme 課程內容與指定閱讀Content and Reading Assignment 教學活動與作業Activity and Homework 學習投入時數Estimated time devoted to coursework per week
    課堂講授Lecture Hours 課程前後Preparation Time

    1

    Topological Vector Spaces
    Basic poperties of topological vector spaces, Separation properties, Linear mappings
    
    習題討論

    3.0

    6.0

    2

    Topological Vector Spaces
    Finite-dimensional spaces, Metrization, Boundedness and continuity
    習題討論

    3.0

    6.0

    3

    Topological Vector Spaces
    Seminorms and local convexity, Quotient spaces, Examples
    
    習題討論

    3.0

    6.0

    4

    Completeness
    Baire category, The Banach-Steinhaus Theorem
    習題討論

    3.0

    6.0

    5

    Completeness
    The open mapping theorem
    習題討論

    3.0

    6.0

    6

    Completeness
    The closed graph theorem, Bilinear mappins
     
    
    習題討論

    3.0

    6.0

    7

    Convexity
    The Hahn-Banach theorems
    習題討論

    3.0

    6.0

    8

    Convexity
    Weak topologies, Compact convex sets
    習題討論

    3.0

    6.0

    9

    Mideterm
    Midterm 
    Midterm 

    0.0

    0.0

    10

    Convexity
    Vector-valued integration, Holomorphic functions
    習題討論

    3.0

    6.0

    11

    Duality in Banach Spaces
    The normed dual of a normed space, Adjoints
    
    習題討論

    3.0

    6.0

    12

    Duality in Banach Spaces
    Compact operators
    習題討論

    3.0

    6.0

    13

    Some Applcations
    A continuity theorem, Closed subspaces of L^p-spaces
    
    習題討論

    3.0

    6.0

    14

    Some Applcations
    The range of vector-valued measure, A generalized Stone-Weierstrass theorem
    習題討論

    3.0

    6.0

    15

    Some Applcations
    A fixed point theorem
    習題討論

    3.0

    6.0

    16

    Some Applcations
    Haar measure on compact groups
    
    習題討論

    3.0

    6.0

    17

    Some Applcations
    Uncomplemented subspaces
    
    習題討論

    3.0

    6.0

    18

    Final
    Final
    Final

    0.0

    0.0

    授課方式Teaching Approach

    80%

    講述 Lecture

    20%

    討論 Discussion

    0%

    小組活動 Group activity

    0%

    數位學習 E-learning

    0%

    其他: Others:

    評量工具與策略、評分標準成效Evaluation Criteria

    習題演練 50%

    期末口試 50%

    指定/參考書目Textbook & References

    Text: Functional Analysis, Walter Rudin

    Reference: Functional Analysis, Yosida

    已申請之圖書館指定參考書目 圖書館指定參考書查詢 |相關處理要點

    維護智慧財產權,務必使用正版書籍。 Respect Copyright.

    課程相關連結Course Related Links


    課程附件Course Attachments

    課程進行中,使用智慧型手機、平板等隨身設備 To Use Smart Devices During the Class

    需經教師同意始得使用 Approval

    列印