教學大綱 Syllabus

科目名稱:組合學

Course Name: Combinatorics

修別:群

Type of Credit: Partially Required

3.0

學分數

Credit(s)

20

預收人數

Number of Students

課程資料Course Details

課程簡介Course Description

This is the first half of a one-year course which has the aim of giving an introduction into combinatorics, a relativ new area of mathematics. Even though some of its problems have been investigated many centuries ago, a systematic development as an independent area of mathematics has started in the middle of the last century (with the notable exception of Graph Theory). Modern combinatorics uses tools from many other areas of mathematics, e.g., topology, algebra, probability theory, analysis, etc. It has many applications, notable in Computer Science, Information Theory, Probability Theory and Biology.

核心能力分析圖 Core Competence Analysis Chart

能力項目說明


    課程目標與學習成效Course Objectives & Learning Outcomes

    Getting aquainted with some of the basic tools, theorems and subareas of Combinatorics; the first semester will focus on enumerative and analytic combinatorics, the second semester will focus on graph theory and extremal combinatorics.

    每周課程進度與作業要求 Course Schedule & Requirements

    教學週次Course Week 彈性補充教學週次Flexible Supplemental Instruction Week 彈性補充教學類別Flexible Supplemental Instruction Type

    In-class Hours: 3; Outside-of-class Hours: 3

    Syllabus:

    1. The principle of inclusion-exclusion and inversion formulae

    2. Lattices and Moebius inversion I

    3. Lattices and Moebius inversion II

    4. Elementary counting and Stirling numbers

    5. Recursions and generating functions I

    6. Recursions and generating functions II

    7. Partitions 

    8. Midterm Exam

    9. Asymptotics and combinatorics 

    10. Real-analytic asymptotics I

    11. Real-analytic asymptotics II

    12. Complex analysis and combinatorics

    13. Exponential growth and rational asymptotics 

    14. Meromorphic asymptotics 

    15. Singularity analysis of generating functions I

    16. Singularity analysis of generating functions II

    17. Final exam

    授課方式Teaching Approach

    100%

    講述 Lecture

    0%

    討論 Discussion

    0%

    小組活動 Group activity

    0%

    數位學習 E-learning

    0%

    其他: Others:

    評量工具與策略、評分標準成效Evaluation Criteria

    Weekly Homework Assignments: 60%

    Midterm Exam: 20%

    Final Exam: 20%

    指定/參考書目Textbook & References

    J. H. van Lint & R. M. Wilson. A Course in Combinatorics, Cambridge University Press, 2nd Edition, 2001

    P. Flajolet and R. Sedgewick. Analytic Combinatorics, Cambridge University Press, 2009

    已申請之圖書館指定參考書目 圖書館指定參考書查詢 |相關處理要點

    書名 Book Title 作者 Author 出版年 Publish Year 出版者 Publisher ISBN 館藏來源* 備註 Note

    維護智慧財產權,務必使用正版書籍。 Respect Copyright.

    課程相關連結Course Related Links

    
                

    課程附件Course Attachments

    課程進行中,使用智慧型手機、平板等隨身設備 To Use Smart Devices During the Class

    No

    列印