教學大綱 Syllabus

科目名稱:金融人工智慧專題研討

Course Name: Special Topics on Financial Applications of Artificial Intelligence

修別:選

Type of Credit: Elective

3.0

學分數

Credit(s)

20

預收人數

Number of Students

課程資料Course Details

課程簡介Course Description

This course provides graduate students opportunities to do research and write relevant papers. The topics include various financial economics and the recent developed techniques in artificial intelligence. Specifically, the aim of this course is to  apply AI technique to quantify the model of portfolio management 、security trading and design、derivative products trading and risk management. At the end of the semester the students are required to complete a publishable paper.

 

核心能力分析圖 Core Competence Analysis Chart

能力項目說明


    課程目標與學習成效Course Objectives & Learning Outcomes

    The goal of the course is to train the students to do research and write a completed paper.

     

    每周課程進度與作業要求 Course Schedule & Requirements

    教學週次Course Week 彈性補充教學週次Flexible Supplemental Instruction Week 彈性補充教學類別Flexible Supplemental Instruction Type

    No.   Date     Subjects 

    01     09/15  Introduction

    02     09/22   Portfolio management I

    03     09/29   Portfolio management II

    04     10/06   Portfolio management III

    05     10/13   Deep learning and active portfolio management I

    06     10/20   Deep learning and active portfolio management II 

    07     10/27   Deep learning and active portfolio management III

    08     11/03   Deep learning and active portfolio management IV

    09     11/10   Midterm Presentation

    10     11/17   Deep Learning and trading I

    11     11/24   Deep Learning and trading II

    12     12/01   Deep Learning and trading III

    13     12/08   Deep Learning and risk management I

    14     12/15   Deep Learning and risk management II

    15     12/22   Blockchain and digital currency I

    16     12/29   Final Presentation

    17      01/05  General discussion

     

    授課方式Teaching Approach

    20%

    講述 Lecture

    50%

    討論 Discussion

    10%

    小組活動 Group activity

    20%

    數位學習 E-learning

    0%

    其他: Others:

    評量工具與策略、評分標準成效Evaluation Criteria

    作業與出席 30%

    報告 70%

    指定/參考書目Textbook & References

    1. Introduction to Machine Learning with Python: A Guide for Data Scientists, Sarah Guido, O'Reilly Media, October 2016.
    2. Deep Learning with Python, François Chollet, Manning Publications, December 2017.
    3. Mastering Bitcoin: Unlocking Digital Cryptocurrencies, Andreas M. Antonopoulos, O'Reilly Media, December 2014.
    4. Investments, Zvi Bodie, Alex Kane, Alan Marcus, McGrow-Hill, 11th ed. 2018.

    已申請之圖書館指定參考書目 圖書館指定參考書查詢 |相關處理要點

    維護智慧財產權,務必使用正版書籍。 Respect Copyright.

    課程相關連結Course Related Links

    
                

    課程附件Course Attachments

    課程進行中,使用智慧型手機、平板等隨身設備 To Use Smart Devices During the Class

    需經教師同意始得使用 Approval

    列印