教學大綱 Syllabus

科目名稱:計算語言學

Course Name: Computational Linguistics

修別:選

Type of Credit: Elective

3.0

學分數

Credit(s)

20

預收人數

Number of Students

課程資料Course Details

課程簡介Course Description

此課程將著重於簡介語言學如何應用於計算語言學領域,講課內容包含基本理論及大量實作練習。希望學生能於課程結束之後,能自行運用常見機器學習模組 (e.g., SVM, MaxEnt, RNN, LSTM, ELMO, BERT 等) 做相關語言學研究。此門課期待學生已有基本 python 程式基礎,以便於能於課程中直接做應用練習。

 

核心能力分析圖 Core Competence Analysis Chart

能力項目說明


    課程目標與學習成效Course Objectives & Learning Outcomes

    期望學生能於修習課程後,對於機器學習模型有個大概了解,以及語言學相關研究能知道如何透過這些模型做出應用,於之後畢業論文撰寫或是至業界找相關工作時能有基礎知識。

    每周課程進度與作業要求 Course Schedule & Requirements

    (暫定)
    *課程內容與指定閱讀、教學活動與作業等相關活動將於開學前提供

    週次            課程主題          學習投入時數

    week 1        Course Introduction          5+

    week 2        N-gram and language model           5+

    week 3        Naive bayes, model training and evaluation           5+

    week 4        Logistic regression and gradient descent           5+

    week 5        Embeddings and weightings                  5+

    week 6        Basic neural networks              5+

    week 7        Sequence labeling (HMM and CRF)       5+

    week 8        Invited Talk       5+

    week 9        Deep learning (RNN, LSTM, Transformers)                  5+

    week 10      Machine translation       5+

    week 11      Transfer learning           5+

    week 12      Midterm Sharing \& Linux Commands         5+

    week 13      Discourse coherence   5+

    week 14      Question answering      5+

    week 15      Project Discussion          5+

    week 16      Final Presentation         5+

    week 17      Term Paper Due           5+

    week 18      End of semester        

    授課方式Teaching Approach

    30%

    講述 Lecture

    30%

    討論 Discussion

    30%

    小組活動 Group activity

    5%

    數位學習 E-learning

    5%

    其他: Others: 網路教材

    評量工具與策略、評分標準成效Evaluation Criteria

    (暫定)

    評分方式:

    - 出席 20%

    - 課堂練習/作業: 20%

    - 課堂報告: 20%

    - 期末口頭發表: 20%

    - 期末報告: 20%

    指定/參考書目Textbook & References

    – Dan Jurafsky and James H. Martin. (2018). Speech and Language
    Processing (3rd edition). Available at: https://web.stanford.edu/~jurafsky/slp3/.

    – Benjamin Bengfort, Tony Ojeda and Rebecca Bilbro. (2018). Applied Text Analysis with Python: enabling language-aware data products with machine learning. O’Reilly.


    – Jacob Perkins, Nitin Hardeniya, Deepti Chopra, Nisheeth Joshi and Iti Mathur. (2016). Natural Language Processing: Python
    and NLTK. O’Reilly.


    – Mark Lutz. (2015). Learning Python (5th edition). O’Reilly.


    – Ruslan Mitkov. (2014). The Oxford Handbook of Computational Linguistics (2nd edition). Oxford University Press.


    – Chris Manning and Hinrich Schütze. (1999). Foundations of Statistical Natural Language Processing. MIT Press.

    已申請之圖書館指定參考書目 圖書館指定參考書查詢 |相關處理要點

    維護智慧財產權,務必使用正版書籍。 Respect Copyright.

    課程相關連結Course Related Links

    
                

    課程附件Course Attachments

    課程進行中,使用智慧型手機、平板等隨身設備 To Use Smart Devices During the Class

    Yes

    列印