教學大綱 Syllabus

科目名稱:SAS/R商業資料分析

Course Name: Business Analytics with SAS/R

修別:選

Type of Credit: Elective

3.0

學分數

Credit(s)

100

預收人數

Number of Students

課程資料Course Details

課程簡介Course Description

電腦教室位置有限,第一週會抽加簽,但名額不會太多。

##

本課程將介紹如何使用R進行數據分析和視覺化計算。在最後的期末報告中,將運用學到的技能來分析實際商業數據,並下正確的策略與建議。

*此堂課只教R。上課前,請先裝好最新版的R及RStudio。

*必需具備基礎統計知識,如迴歸、機率、分配等,並對程式撰寫充滿興趣。

*已修過商業分析:SAS/R應用的同學,請勿修此堂課。

*這堂課負擔很重,作業超級多,我教的很快,所以請仔細思考是否要修。

核心能力分析圖 Core Competence Analysis Chart

能力項目說明


    課程目標與學習成效Course Objectives & Learning Outcomes

    Topics include data management, exploring and visualizing data, hypothesis testing, confidence intervals, counts and tables, analysis of variance, regression, principal components, and machine learning.

    Upon completion of this course, students should be able to think critically about data and apply standard statistical inference procedures to draw conclusions from such analyses.

    每周課程進度與作業要求 Course Schedule & Requirements

    週次

    課程主題

    課程內容與

    指定閱讀

    教學活動與作業

    學生學習投入時間

    課堂講授

    課程前後

    1. Feb 17

    Introduction

     

     

     

     

    2. Feb 24

    Introduction of Business Analytics and R

    RMarkdown.

    Basic Math operations.

    Advanced Data Structures.

    tidyverse套件

    “Hello World”

    HW1

    3

    2

    3. Mar 3

    Data Analysis

    Data Visualization

     

    Statistical Measures.

    Probability Distribution and its types.

    EDA, ggplot2.

    HW1

    3

    2

    4. Mar 10

    R Programming

    Loop and Control Statements.

    HW2

    3

    2

    5. Mar 17

    R Programming Built-in Function. HW2

    3

    2

    6. Mar 24

    Regression

    Regression and its application.

    HW3

    3

    2

    7. Mar 31

    Regression

    GLM and its application.

    HW3

    3

    2

    8. Apr 7

    Sampling

    Bootstrapping, CV.

    HW3

    3

    2

    9. Apr 14

    Machine Learning

    Unsupervised Learning and its application.

    HW4

    3

    2

    10. Apr 21

    Machine Learning

    Supervised Learning and its application.

    HW4

    3

    2

    11. Apr 28

    Dimension Reduction

    PCA.

    HW5

    3

    2

    12. May 5

    Text Mining

    Web Crawler, word cloud.

    HW5

    3

    2

    13. May 12

    Network Analysis SNA HW5    

    14. May 19

    校慶放假        

    15. May 26

    A/B test

    A/B test

    HW5

    3

    2

    16. June 2

    期末考試

     

         

    17. June 9

    期末考試

     

     

       
           

     

     

    *每週進度,依學生學習狀況會再調整。

    授課方式Teaching Approach

    40%

    講述 Lecture

    20%

    討論 Discussion

    20%

    小組活動 Group activity

    20%

    數位學習 E-learning

    0%

    其他: Others:

    評量工具與策略、評分標準成效Evaluation Criteria

    作業 60% (每個作業繳交期限為2~3個禮拜後)

    期末考試 40% 

    指定/參考書目Textbook & References

    Lecture notes.

    參考書目:

    R for Data Science  http://r4ds.had.co.nz/

    R Programming for Data Science  https://bookdown.org/rdpeng/rprogdatascience/

    R for Business Analytics

    https://www.springer.com/us/book/9781461443421

    An Introduction to Statistical Learning with Applications in R

    http://www-bcf.usc.edu/~gareth/ISL/ISLR%20Seventh%20Printing.pdf

    已申請之圖書館指定參考書目 圖書館指定參考書查詢 |相關處理要點

    維護智慧財產權,務必使用正版書籍。 Respect Copyright.

    課程相關連結Course Related Links

    http://moodle.nccu.edu.tw/

    課程附件Course Attachments

    課程進行中,使用智慧型手機、平板等隨身設備 To Use Smart Devices During the Class

    Yes

    列印