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Preface

This book has grown out of printed notes which accompanied lectures
given by ourselves and our colleagues over many years to undergraduate
mathematicians at Oxford. During those years the contents and the
arrangement of the lectures have changed substantially, and this book
has a wider scope than is currently taught. It contains mathematics
which, in an ideal world, would be part of the equipment of any well-
educated mathematician.

Numerical analysis is the branch of mathematics concerned with the
theoretical foundations of numerical algorithms for the solution of prob-
lems arising in scientific applications. The subject addresses a variety of
questions ranging from the approximation of functions and integrals to
the approximate solution of algebraic, transcendental, differential and
integral equations, with particular emphasis on the stability, accuracy,
efficiency and reliability of numerical algorithms. The purpose of this
book is to provide an elementary introduction into this active and ex-
citing field, and is aimed at students in the second year of a university
mathematics course.

The book addresses a wide range of numerical problems in algebra
and analysis. Chapter 2 deals with the solution of systems of linear
equations, a process which can be completed in a finite number of arith-
metical operations. In the rest of the book the solution of a problem
is sought as the limit of an infinite sequence; in that sense the output
of the numerical algorithm is an ‘approximate’ solution. This need not,
however, mean any relaxation of the usual standards of rigorous anal-
ysis. The idea of convergence of a sequence of real numbers (xn) to a
real number ξ is very familiar: given any positive value of ε there exists
a positive integer N0 such that |xn − ξ| < ε for all n such that n > N0.
In such a situation one can obtain as accurate an approximation to ξ as

vii



viii Preface

required by calculating sufficiently many members of the sequence, or
just one member, sufficiently far along. A ‘pure mathematician’ would
prefer the exact answer, ξ, but the sorts of guaranteed accurate approxi-
mations which will be discussed here are entirely satisfactory in real-life
applications.

Numerical analysis brings two new ideas to the usual discussion of
convergence of sequences. First, we need, not just the existence of N0,
but a good estimate of how large it is; and it may be too large for
practical calculations. Second, rather than being asked for the limit of
a given sequence, we are usually given the existence of the limit ξ (or
its approximate location on the real line) and then have to construct a
sequence which converges to it. If the rate of convergence is slow, so
that the value of N0 is large, we must then try to construct a better
sequence, one that converges to ξ more rapidly. These ideas have direct
applications in the solution of a single nonlinear equation in Chapter
1, the solution of systems of nonlinear equations in Chapter 4 and the
calculation of the eigenvalues and eigenvectors of a matrix in Chapter 5.

The next six chapters are concerned with polynomial approximation,
and show how, in various ways, we can construct a polynomial which
approximates, as accurately as required, a given continuous function.
These ideas have an obvious application in the evaluation of integrals,
where we calculate the integral of the approximating polynomial instead
of the integral of the given function.

Finally, Chapters 12 to 14 deal with the numerical solution of ordinary
differential equations, with Chapter 14 presenting the fundamentals of
the finite element method. The results of Chapter 14 can be readily
extended to linear second-order partial differential equations.

We have tried to make the coverage as complete as is consistent with
remaining quite elementary. The limitations of size are most obvious
in Chapter 12 on the solution of initial value problems for ordinary
differential equations. This is an area where a number of excellent books
are available, at least one of which is published in two weighty volumes.
Chapter 12 does not describe or analyse anything approaching all the
available methods, but we hope we have included some of those in most
common use.

There is a selection of Exercises at the end of each chapter. All these
exercises are theoretical; students are urged to apply all the methods
described to some simple examples to see what happens. A few of the
exercises will be found to require some heavy algebraic manipulation;
these have been included because we assume that readers will have ac-
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cess to some computer algebra system such as Maple or Mathematica,
which then make the algebraic work almost trivial. Those involved in
teaching courses based on this book may obtain copies of LATEX files con-
taining solutions to these exercises by applying to the publisher by email
(solutions@cambridge.org). Although the material presented in this
book does not presuppose the reader’s acquaintance with mathematical
software packages, the importance of these cannot be overemphasised.
In Appendix B, a brief set of pointers is provided to relevant software
repositories.

Our treatment is intended to maintain a reasonably high standard of
rigour, with many theorems and formal proofs. The main prerequisite
is therefore some familiarity with elementary real analysis. Appendix A
lists the standard theorems (labelledTheoremA.1,A.2, . . . ,A7) which
are used in the book, together with proofs of one or two of them which
might be less familiar. Some knowledge of basic matrix algebra is as-
sumed. We have also used some elementary ideas from the theory of
normed linear spaces in a number of places; complete definitions and ex-
amples are given. Some prior knowledge of these areas would be helpful,
although not essential.

The chart below indicates how the chapters of the book are inter-
related. They show, in particular, how Chapters 1 to 5 form a largely
self-contained unit, as do Chapters 6 to 10.

Roadmap of the book

Chapter 1

⇓
Chapter 4 ⇐= Chapter 2

⇓
Chapter 3 =⇒ Chapter 11 ⇐= Chapter 6

⇓ ⇓ ⇓
Chapter 5 ⇓ Chapter 7

⇓ ⇓
Chapter 13 =⇒ Chapter 14 Chapter 8

⇓ ⇑ ⇓
=⇒ Chapter 12 ⇐= Chapter 10 ⇐= Chapter 9
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We have included some historical notes throughout the book. As well
as hoping to stimulate an interest in the development of the subject,
these notes show how wide a historical range even this elementary book
covers. Many of the methods were developed by the great mathemati-
cians of the seventeenth and eighteenth centuries, including Newton,
Euler and Gauss, but what is usually known as Gaussian elimination for
the solution of systems of linear equations was known to the Chinese two
thousand years ago. At the other end of the historical scale, the analy-
sis of the eigenvalue problem, and the numerical solution of differential
equations, are much more recent, and are due to mathematicians who
are still very much alive. Many of our historical notes are based on the
excellent biographical database at the history of mathematics website

http://www-history.mcs.st-andrews.ac.uk/history/

We have tried to eradicate as many typographical errors from the text
as possible; however, we are mindful that some may have escaped our
attention. We plan to post any typos reported to us on

http://web.comlab.ox.ac.uk/oucl/work/endre.suli/index.html

We wish to express our gratitude to Professor Bill Morton for setting
us off on this tour de force, to David Tranah at Cambridge University
Press for encouraging us to persist with the project, and to the staff
of the Press for not only improving the appearance of the book and
eliminating a number of typographical errors, but also for correcting
and improving some of our mathematics. We also wish to thank our
colleagues at the Oxford University Computing Laboratory, particularly
Nick Trefethen, Mike Giles and Andy Wathen, for keeping our spirits up,
and to Paul Houston at the Department of Mathematics and Computer
Science of the University of Leicester for his help with the final example
in the book.

Above all, we are grateful to our families for their patience, support
and understanding: this book is dedicated to them.

ES & DFM Oxford, September 2002.



1

Solution of equations by iteration

1.1 Introduction

Equations of various kinds arise in a range of physical applications and
a substantial body of mathematical research is devoted to their study.
Some equations are rather simple: in the early days of our mathematical
education we all encountered the single linear equation ax+b = 0, where
a and b are real numbers and a �= 0, whose solution is given by the
formula x = −b/a. Many equations, however, are nonlinear: a simple
example is ax2 + bx+ c = 0, involving a quadratic polynomial with real
coefficients a, b, c, and a �= 0. The two solutions to this equation, labelled
x1 and x2, are found in terms of the coefficients of the polynomial from
the familiar formulae

x1 =
−b +

√
b2 − 4ac

2a
, x2 =

−b −
√
b2 − 4ac

2a
. (1.1)

It is less likely that you have seen the more intricate formulae for the
solution of cubic and quartic polynomial equations due to the sixteenth
century Italian mathematicians Niccolo Fontana Tartaglia (1499–1557)
and Lodovico Ferrari (1522–1565), respectively, which were published
by Girolamo Cardano (1501–1576) in 1545 in his Artis magnae sive de
regulis algebraicis liber unus. In any case, if you have been led to believe
that similar expressions involving radicals (roots of sums of products of
coefficients) will supply the solution to any polynomial equation, then
you should brace yourself for a surprise: no such closed formula exists
for a general polynomial equation of degree n when n ≥ 5. It transpires
that for each n ≥ 5 there exists a polynomial equation of degree n with

1



2 1 Solution of equations by iteration

integer coefficients which cannot be solved in terms of radicals;1 such is,
for example, x5 − 4x − 2 = 0.

Since there is no general formula for the solution of polynomial equa-
tions, no general formula will exist for the solution of an arbitrary non-
linear equation of the form f(x) = 0 where f is a continuous real-valued
function. How can we then decide whether or not such an equation
possesses a solution in the set of real numbers, and how can we find a
solution?

The present chapter is devoted to the study of these questions. Our
goal is to develop simple numerical methods for the approximate solution
of the equation f(x) = 0 where f is a real-valued function, defined and
continuous on a bounded and closed interval of the real line. Methods
of the kind discussed here are iterative in nature and produce sequences
of real numbers which, in favourable circumstances, converge to the
required solution.

1.2 Simple iteration

Suppose that f is a real-valued function, defined and continuous on a
bounded closed interval [a, b] of the real line. It will be tacitly assumed
throughout the chapter that a < b, so that the interval is nonempty. We
wish to find a real number ξ ∈ [a, b] such that f(ξ) = 0. If such ξ exists,
it is called a solution to the equation f(x) = 0.

Even some relatively simple equations may fail to have a solution in
the set of real numbers. Consider, for example,

f: x �→ x2 + 1 .

Clearly f(x) = 0 has no solution in any interval [a, b] of the real line.
Indeed, according to (1.1), the quadratic polynomial x2+1 has two roots:
x1 =

√
−1 = ı and x2 = −

√
−1 = −ı. However, these belong to the set

of imaginary numbers and are therefore excluded by our definition of
solution which only admits real numbers. In order to avoid difficulties
of this kind, we begin by exploring the existence of solutions to the
equation f(x) = 0 in the set of real numbers. Our first result in this
direction is rather simple.
1 This result was proved in 1824 by the Norwegian mathematician Niels Henrik Abel
(1802–1829), and was further refined in the work of Evariste Galois (1811–1832)
who clarified the circumstances in which a closed formula may exist for the solution
of a polynomial equation of degree n in terms of radicals.
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Theorem 1.1 Let f be a real-valued function, defined and continuous
on a bounded closed interval [a, b] of the real line. Assume, further, that
f(a)f(b) ≤ 0; then, there exists ξ in [a, b] such that f(ξ) = 0.

Proof If f(a) = 0 or f(b) = 0, then ξ = a or ξ = b, respectively, and the
proof is complete. Now, suppose that f(a)f(b) �= 0. Then, f(a)f(b) < 0;
in other words, 0 belongs to the open interval whose endpoints are f(a)
and f(b). By the Intermediate Value Theorem (Theorem A.1), there
exists ξ in the open interval (a, b) such that f(ξ) = 0.

To paraphrase Theorem 1.1, if a continuous function f has opposite
signs at the endpoints of the interval [a, b], then the equation f(x) = 0
has a solution in (a, b). The converse statement is, of course, false.
Consider, for example, a continuous function defined on [a, b] which
changes sign in the open interval (a, b) an even number of times, with
f(a)f(b) �= 0; then, f(a)f(b) > 0 even though f(x) = 0 has solutions
inside [a, b]. Of course, in the latter case, there exist an even number
of subintervals of (a, b) at the endpoints of each of which f does have
opposite signs. However, finding such subintervals may not always be
easy.

To illustrate this last point, consider the rather pathological function

f: x �→ 1
2

− 1
1 + M |x − 1.05| , (1.2)

depicted in Figure 1.1 for x in the closed interval [0.8, 1.8] and M = 200.
The solutions x1 = 1.05− (1/M) and x2 = 1.05+(1/M) to the equation
f(x) = 0 are only a distance 2/M apart and, for large and positive M ,
locating them computationally will be a challenging task.

Remark 1.1 If you have access to the mathematical software package
Maple, plot the function f by typing

plot(1/2-1/(1+200*abs(x-1.05)), x=0.8..1.8, y=-0.5..0.6);

at the Maple command line, and then repeat this experiment by choosing
M = 2000, 20000, 200000, 2000000, and 20000000 in place of the num-
ber 200. What do you observe? For the last two values of M , replot the
function f for x in the subinterval [1.04999, 1.05001]. �

An alternative sufficient condition for the existence of a solution to
the equation f(x) = 0 is arrived at by rewriting it in the equivalent
form x − g(x) = 0 where g is a certain real-valued function, defined
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0
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x

Fig. 1.1. Graph of the function f : x �→ 1
2
− 1

1+200|x−1.05| for x ∈ [0.8, 1.8].

and continuous on [a, b]; the choice of g and its relationship with f will
be clarified below through examples. Upon such a transformation the
problem of solving the equation f(x) = 0 is converted into one of finding
ξ such that ξ − g(ξ) = 0.

Theorem 1.2 (Brouwer’s Fixed Point Theorem) Suppose that g

is a real-valued function, defined and continuous on a bounded closed
interval [a, b] of the real line, and let g(x) ∈ [a, b] for all x ∈ [a, b].
Then, there exists ξ in [a, b] such that ξ = g(ξ); the real number ξ is
called a fixed point of the function g.

Proof Let f(x) = x−g(x). Then, f(a) = a−g(a) ≤ 0 since g(a) ∈ [a, b]
and f(b) = b − g(b) ≥ 0 since g(b) ∈ [a, b]. Consequently, f(a)f(b) ≤ 0,
with f defined and continuous on the closed interval [a, b]. By Theorem
1.1 there exists ξ ∈ [a, b] such that 0 = f(ξ) = ξ − g(ξ).

Figure 1.2 depicts the graph of a function x �→ g(x), defined and
continuous on a closed interval [a, b] of the real line, such that g(x)
belongs to [a, b] for all x in [a, b]. The function g has three fixed points
in the interval [a, b]: the x-coordinates of the three points of intersection
of the graph of g with the straight line y = x.

Of course, any equation of the form f(x) = 0 can be rewritten in the
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a

b

y = x

y = g(x)

a b

x

y

Fig. 1.2. Graph of a function g, defined and continuous on the interval [a, b],
which maps [a, b] into itself; g has three fixed points in [a, b]: the x-coordinates
of the three points of intersection of the graph of g with y = x.

equivalent form of x = g(x) by letting g(x) = x+f(x). While there is no
guarantee that the function g, so defined, will satisfy the conditions of
Theorem 1.2, there are many alternative ways of transforming f(x) = 0
into x = g(x), and we only have to find one such rearrangement with g

continuous on [a, b] and such that g(x) ∈ [a, b] for all x ∈ [a, b]. Sounds
simple? Fine. Take a look at the following example.

Example 1.1 Consider the function f defined by f(x) = ex − 2x − 1
for x ∈ [1, 2]. Clearly, f(1) < 0 and f(2) > 0. Thus we deduce from
Theorem 1.1 the existence of ξ in [1, 2] such that f(ξ) = 0.

In order to relate this example to Theorem 1.2, let us rewrite the equa-
tion f(x) = 0 in the equivalent form x−g(x) = 0, where the function g is
defined on the interval [1, 2] by g(x) = ln(2x+ 1); here (and throughout
the book) ln means loge. As g(1) ∈ [1, 2], g(2) ∈ [1, 2] and g is monotonic
increasing, it follows that g(x) ∈ [1, 2] for all x ∈ [1, 2], showing that g

satisfies the conditions of Theorem 1.2. Thus, again, we deduce the
existence of ξ ∈ [1, 2] such that ξ − g(ξ) = 0 or, equivalently, f(ξ) = 0.

We could have also rewritten our equation as x = (ex−1)/2. However,
the associated function g: x �→ (ex−1)/2 does not map the interval [1, 2]
into itself, so Theorem 1.2 cannot then be applied. �
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Although the ability to verify the existence of a solution to the equa-
tion f(x) = 0 is important, none of what has been said so far provides
a method for solving this equation. The following definition is a first
step in this direction: it will lead to the construction of an algorithm for
computing an approximation to the fixed point ξ of the function g, and
will thereby supply an approximate solution to the equivalent equation
f(x) = 0.

Definition 1.1 Suppose that g is a real-valued function, defined and
continuous on a bounded closed interval [a, b] of the real line, and assume
that g(x) ∈ [a, b] for all x ∈ [a, b]. Given that x0 ∈ [a, b], the recursion
defined by

xk+1 = g(xk) , k = 0, 1, 2, . . . , (1.3)

is called a simple iteration; the numbers xk, k ≥ 0, are referred to as
iterates.

If the sequence (xk) defined by (1.3) converges, the limit must be a
fixed point of the function g, since g is continuous on a closed interval.
Indeed, writing ξ = limk→∞ xk, we have that

ξ = lim
k→∞

xk+1 = lim
k→∞

g(xk) = g

(
lim
k→∞

xk

)
= g(ξ) , (1.4)

where the second equality follows from (1.3) and the third equality is a
consequence of the continuity of g.

A sufficient condition for the convergence of the sequence (xk) is pro-
vided by our next result which represents a refinement of Brouwer’s
Fixed Point Theorem, under the additional assumption that the map-
ping g is a contraction.

Definition 1.2 (Contraction) Suppose that g is a real-valued func-
tion, defined and continuous on a bounded closed interval [a, b] of the
real line. Then, g is said to be a contraction on [a, b] if there exists a
constant L such that 0 < L < 1 and

|g(x) − g(y)| ≤ L|x − y| ∀x, y ∈ [a, b] . (1.5)

Remark 1.2 The terminology ‘contraction’ stems from the fact that
when (1.5) holds with 0 < L < 1, the distance | g(x) − g(y) | between the
images of the points x, y is (at least 1/L times) smaller than the distance
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|x − y | between x and y. More generally, when L is any positive real
number, (1.5) is referred to as a Lipschitz condition.1

Armed with Definition 1.2, we are now ready to state the main result
of this section.

Theorem 1.3 (Contraction Mapping Theorem) Let g be a real-
valued function, defined and continuous on a bounded closed interval
[a, b] of the real line, and assume that g(x) ∈ [a, b] for all x ∈ [a, b].
Suppose, further, that g is a contraction on [a, b]. Then, g has a unique
fixed point ξ in the interval [a, b]. Moreover, the sequence (xk) defined
by (1.3) converges to ξ as k → ∞ for any starting value x0 in [a, b].

Proof The existence of a fixed point ξ for g is a consequence of Theorem
1.2. The uniqueness of this fixed point follows from (1.5) by contradic-
tion: for suppose that g has a second fixed point, η, in [a, b]. Then,

| ξ − η | = | g(ξ) − g(η) | ≤ L| ξ − η | ,

i.e., (1 − L)| ξ − η | ≤ 0. As 1 − L > 0, we deduce that η = ξ.
Let x0 be any element of [a, b] and consider the sequence (xk) de-

fined by (1.3). We shall prove that (xk) converges to the fixed point ξ.
According to (1.5) we have that

|xk − ξ | = | g(xk−1) − g(ξ) | ≤ L|xk−1 − ξ | , k ≥ 1 ,

from which we then deduce by induction that

|xk − ξ | ≤ Lk|x0 − ξ | , k ≥ 1 . (1.6)

As L ∈ (0, 1), it follows that limk→∞ Lk = 0, and hence we conclude
that limk→∞ |xk − ξ | = 0.

Let us illustrate the Contraction Mapping Theorem by an example.

Example 1.2 Consider the equation f(x) = 0 on the interval [1, 2] with
f(x) = ex−2x−1, as in Example 1.1. Recall from Example 1.1 that this
equation has a solution, ξ, in the interval [1, 2], and ξ is a fixed point of
the function g defined on [1, 2] by g(x) = ln(2x + 1).

1 Rudolf Otto Sigismund Lipschitz (14 May 1832, Königsberg, Prussia (now Kalin-
ingrad, Russia) – 7 October 1903, Bonn, Germany) made important contributions
to number theory, the theory of Bessel functions and Fourier series, the theory
of ordinary and partial differential equations, and to analytical mechanics and
potential theory.
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Table 1.1. The sequence (xk) defined by (1.8).

k xk

0 1.000000
1 1.098612
2 1.162283
3 1.201339
4 1.224563
5 1.238121
6 1.245952
7 1.250447
8 1.253018
9 1.254486

10 1.255323
11 1.255800

Now, the function g is defined and continuous on the interval [1, 2], and g

is differentiable on (1, 2). Thus, by the Mean Value Theorem (Theorem
A.3), for any x, y in [1, 2] we have that

| g(x) − g(y) | = | g′(η)(x − y) | = |g′(η)| |x − y | (1.7)

for some η that lies between x and y and is therefore in the interval
[1, 2]. Further, g′(x) = 2/(2x + 1) and g′′(x) = −4/(2x + 1)2. As
g′′(x) < 0 for all x in [1, 2], g′ is monotonic decreasing on [1, 2]. Hence
g′(1) ≥ g′(η) ≥ g′(2), i.e., g′(η) ∈ [2/5, 2/3]. Thus we deduce from (1.7)
that

| g(x) − g(y) | ≤ L|x − y | ∀x, y ∈ [1, 2] ,

with L = 2/3. According to the Contraction Mapping Theorem, the
sequence (xk) defined by the simple iteration

xk+1 = ln(2xk + 1) , k = 0, 1, 2, . . . , (1.8)

converges to ξ for any starting value x0 in [1, 2]. Let us choose x0 = 1, for
example, and compute the next 11 iterates, say. The results are shown
in Table 1.1. Even though we have carried six decimal digits, after 11
iterations only the first two decimal digits of the iterates xk appear to
have settled; thus it seems likely that ξ = 1.26 to two decimal digits. �

You may now wonder how many iterations we should perform in (1.8)
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to ensure that all six decimals have converged to their correct values. In
order to answer this question, we need to carry out some analysis.

Theorem 1.4 Consider the simple iteration (1.3) where the function
g satisfies the hypotheses of the Contraction Mapping Theorem on the
bounded closed interval [a, b]. Given x0 ∈ [a, b] and a certain tolerance
ε > 0, let k0(ε) denote the smallest positive integer such that xk is no
more than ε away from the (unknown) fixed point ξ, i.e., |xk − ξ| ≤ ε,
for all k ≥ k0(ε). Then,

k0(ε) ≤
[
ln |x1 − x0 | − ln (ε(1 − L))

ln(1/L)

]
+ 1 , (1.9)

where, for a real number x, [x] signifies the largest integer less than or
equal to x.

Proof From (1.6) in the proof of Theorem 1.3 we know that

|xk − ξ| ≤ Lk |x0 − ξ| , k ≥ 1 .

Using this result with k = 1, we obtain

|x0 − ξ| = |x0 − x1 + x1 − ξ|
≤ |x0 − x1| + |x1 − ξ|
≤ |x0 − x1| + L|x0 − ξ| .

Hence

|x0 − ξ| ≤ 1
1 − L

|x0 − x1| .

By substituting this into (1.6) we get

|xk − ξ| ≤ Lk

1 − L
|x1 − x0| . (1.10)

Thus, in particular, |xk − ξ| ≤ ε provided that

Lk
1

1 − L
|x1 − x0| ≤ ε .

On taking the (natural) logarithm of each side in the last inequality, we
find that |xk − ξ| ≤ ε for all k such that

k ≥ ln |x1 − x0| − ln (ε(1 − L))
ln(1/L)

.

Therefore, the smallest integer k0(ε) such that |xk − ξ| ≤ ε for all
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k ≥ k0(ε) cannot exceed the expression on the right-hand side of the
inequality (1.9).

This result provides an upper bound on the maximum number of
iterations required to ensure that the error between the kth iterate xk
and the (unknown) fixed point ξ is below the prescribed tolerance ε.
Note, in particular, from (1.9), that if L is close to 1, then k0(ε) may
be quite large for any fixed ε. We shall revisit this point later on in the
chapter.

Example 1.3 Now we can return to Example 1.2 to answer the ques-
tion posed there about the maximum number of iterations required, with
starting value x0 = 1, to ensure that the last iterate computed is correct
to six decimal digits.

Letting ε = 0.5×10−6 and recalling from Example 1.2 that L = 2/3, the
formula (1.9) yields k0(ε) ≤ [32.778918]+1, so we have that k0(ε) ≤ 33.
In fact, 33 is a somewhat pessimistic overestimate of the number of
iterations required: computing the iterates xk successively shows that
already x25 is correct to six decimal digits, giving ξ = 1.256431. �

Condition (1.5) can be rewritten in the following equivalent form:∣∣∣∣g(x) − g(y)
x − y

∣∣∣∣ ≤ L ∀x, y ∈ [a, b] , x �= y ,

with L ∈ (0, 1), which can, in turn, be rephrased by saying that the
absolute value of the slope of the function g does not exceed L ∈ (0, 1).
Assuming that g is a differentiable function on the open interval (a, b),
the Mean Value Theorem (Theorem A.3) tells us that

g(x) − g(y)
x − y

= g′(η)

for some η that lies between x and y and is therefore contained in the
interval (a, b).

We shall therefore adopt the following assumption that is somewhat
stronger than (1.5) but is easier to verify in practice:

g is differentiable on (a, b) and
(1.11)

∃L ∈ (0, 1) such that |g′(x)| ≤ L for all x ∈ (a, b) .

Consequently, Theorem 1.3 still holds when (1.5) is replaced by (1.11).
We note that the requirement in (1.11) that g be differentiable is
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indeed more demanding than the Lipschitz condition (1.5): for example,
g(x) = |x| satisfies the Lipschitz condition on any closed interval of the
real line, with L = 1, yet g is not differentiable at x = 0.1

Next we discuss a local version of the Contraction Mapping Theorem,
where (1.11) is only assumed in a neighbourhood of the fixed point ξ

rather than over the entire interval [a, b].

Theorem 1.5 Suppose that g is a real-valued function, defined and
continuous on a bounded closed interval [a, b] of the real line, and assume
that g(x) ∈ [a, b] for all x ∈ [a, b]. Let ξ = g(ξ) ∈ [a, b] be a fixed point
of g (whose existence is ensured by Theorem 1.2), and assume that g

has a continuous derivative in some neighbourhood of ξ with |g′(ξ)| < 1.
Then, the sequence (xk) defined by xk+1 = g(xk), k ≥ 0, converges to ξ

as k → ∞, provided that x0 is sufficiently close to ξ.

Proof By hypothesis, there exists h > 0 such that g′ is continuous in
the interval [ξ−h, ξ+h]. Since |g′(ξ)| < 1 we can find a smaller interval
Iδ = [ξ−δ, ξ+δ], where 0 < δ ≤ h, such that |g′(x)| ≤ L in this interval,
with L < 1. To do so, take L = 1

2 (1 + |g′(ξ)|) and then choose δ ≤ h

such that

|g′(x) − g′(ξ)| ≤ 1
2 (1 − |g′(ξ)|)

for all x in Iδ; this is possible since g′ is continuous at ξ. Hence,

|g′(x)| ≤ |g′(x) − g′(ξ)| + |g′(ξ)| ≤ 1
2 (1 − |g′(ξ)|) + |g′(ξ)| = L

for all x ∈ Iδ. Now, suppose that xk lies in the interval Iδ. Then,

xk+1 − ξ = g(xk) − ξ = g(xk) − g(ξ) = (xk − ξ)g′(ηk)

by the Mean Value Theorem (Theorem A.3), where ηk lies between xk
and ξ, and therefore also belongs to Iδ. Hence |g′(ηk)| ≤ L, and

|xk+1 − ξ| ≤ L|xk − ξ| . (1.12)

This shows that xk+1 also lies in Iδ, and a simple argument by induction
shows that if x0 belongs to Iδ, then all xk, k ≥ 0, are in Iδ, and also

|xk − ξ| ≤ Lk|x0 − ξ| , k ≥ 0 . (1.13)

Since 0 < L < 1 this implies that the sequence (xk) converges to ξ.
1 If you are familiar with the concept of Lebesgue measure, you will find the following
result, known as Rademacher’s Theorem, revealing. A function f satisfying
the Lipschitz condition (1.5) on an interval [a, b] is differentiable on [a, b], except,
perhaps, at the points of a subset of zero Lebesgue measure.
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If the conditions of Theorem 1.5 are satisfied in the vicinity of a fixed
point ξ, then the sequence (xk) defined by the iteration xk+1 = g(xk),
k ≥ 0, will converge to ξ for any starting value x0 that is sufficiently
close to ξ. If, on the other hand, the conditions of Theorem 1.5 are
violated, there is no guarantee that any sequence (xk) defined by the
iteration xk+1 = g(xk), k ≥ 0, will converge to the fixed point ξ for
any starting value x0 near ξ. In order to distinguish between these two
cases, we introduce the following definition.

Definition 1.3 Suppose that g is a real-valued function, defined and
continuous on the bounded closed interval [a, b], such that g(x) ∈ [a, b]
for all x ∈ [a, b], and let ξ denote a fixed point of g. We say that ξ is
a stable fixed point of g, if the sequence (xk) defined by the iteration
xk+1 = g(xk), k ≥ 0, converges to ξ whenever the starting value x0 is
sufficiently close to ξ. Conversely, if no sequence (xk) defined by this
iteration converges to ξ for any starting value x0 close to ξ, except for
x0 = ξ, then we say that ξ is an unstable fixed point of g.

We note that, with this definition, a fixed point may be neither stable
nor unstable (see Exercise 2).

As will be demonstrated below in Example 1.5, even some very simple
functions may possess both stable and unstable fixed points. Theorem
1.5 shows that if g′ is continuous in a neighbourhood of ξ, then the
condition |g′(ξ)| < 1 is sufficient to ensure that ξ is a stable fixed point.
The case of an unstable fixed point will be considered later, in Theorem
1.6.

Now, assuming that ξ is a stable fixed point of g, we may also be in-
terested in the speed at which the sequence (xk) defined by the iteration
xk+1 = g(xk), k ≥ 0, converges to ξ. Under the hypotheses of Theorem
1.5, it follows from the proof of that theorem that

lim
k→∞

|xk+1 − ξ|
|xk − ξ| = lim

k→∞

∣∣∣∣g(xk) − g(ξ)
xk − ξ

∣∣∣∣ = |g′(ξ)| . (1.14)

Consequently, we can regard |g′(ξ)| ∈ (0, 1) as a measure of the speed of
convergence of the sequence (xk) to the fixed point ξ.

Definition 1.4 Suppose that ξ = limk→∞ xk. We say that the sequence
(xk) converges to ξ at least linearly if there exist a sequence (εk) of
positive real numbers converging to 0, and µ ∈ (0, 1), such that

|xk − ξ| ≤ εk , k = 0, 1, 2, . . . , and lim
k→∞

εk+1

εk
= µ . (1.15)
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If (1.15) holds with µ = 0, then the sequence (xk) is said to converge to
ξ superlinearly.
If (1.15) holds with µ ∈ (0, 1) and εk = |xk − ξ|, k = 0, 1, 2, . . ., then

(xk) is said to converge to ξ linearly, and the number ρ = − log10 µ is
then called the asymptotic rate of convergence of the sequence. If
(1.15) holds with µ = 1 and εk = |xk − ξ|, k = 0, 1, 2, . . ., the rate of
convergence is slower than linear and we say that the sequence converges
to ξ sublinearly.

The words ‘at least’ in this definition refer to the fact that we only
have inequality in |xk−ξ| ≤ εk, which may be all that can be ascertained
in practice. Thus, it is really the sequence of bounds εk that converges
linearly.

For a linearly convergent sequence the asymptotic rate of convergence
ρ measures the number of correct decimal digits gained in one iteration;
in particular, the number of iterations required in order to gain one more
correct decimal digit is at most [1/ρ] + 1. Here [1/ρ] denotes the largest
integer that is less than or equal to 1/ρ.

Under the hypotheses of Theorem 1.5, the equalities (1.14) will hold
with µ = |g′(ξ)| ∈ [0, 1), and therefore the sequence (xk) generated
by the simple iteration will converge to the fixed point ξ linearly or
superlinearly.

Example 1.4 Given that α is a fixed positive real number, consider the
function g defined on the interval [0, 1] by

g(x) =

{
2−{1+(log2(1/x))1/α}α

for 0 < x ≤ 1 ,

0 for x = 0 .

As limx→0+ g(x) = 0, the function g is continuous on [0, 1]. Moreover, g
is strictly monotonic increasing on [0, 1] and g(x) ∈ [0, 1/2] ⊂ [0, 1] for
all x in [0, 1]. We note that ξ = 0 is a fixed point of g (cf. Figure 1.3).

Consider the sequence (xk) defined by xk+1 = g(xk), k ≥ 0, with
x0 = 1. It is a simple matter to show by induction that xk = 2−k

α

,
k ≥ 0. Thus we deduce that (xk) converges to ξ = 0 as k → ∞. Since

lim
k→∞

∣∣∣∣xk+1

xk

∣∣∣∣ = µ =




1 for 0 < α < 1 ,
1
2 for α = 1 ,

0 for α > 1 ,

we conclude that for α ∈ (0, 1) the sequence (xk) converges to ξ = 0 sub-
linearly. For α = 1 it converges to ξ = 0 linearly with asymptotic rate
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Fig. 1.3. Graph of the function g from Example 1.4 on the interval x ∈ [0, 1]
for (a) α = 1/2, (b) α = 1, (c) α = 2.

ρ = − log10 µ = log10 2. When α > 1, the sequence converges to the fixed
point ξ = 0 superlinearly. The same conclusions could have been reached
by showing (through tedious differentiation) that limx→0+ g′(x) = µ,
with µ as defined above for the various values of the parameter α. �

For a linearly convergent simple iteration xk+1 = g(xk), where g′ is
continuous in a neighbourhood of the fixed point ξ and 0 < |g′(ξ)| < 1,
Definition 1.4 and (1.14) imply that the asymptotic rate of convergence
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of the sequence (xk) is ρ = − log10 |g′(ξ)|. Evidently, a small value of
|g′(ξ)| corresponds to a large positive value of ρ and will result in more
rapid convergence, while if |g′(ξ)| < 1 but |g′(ξ)| is very close to 1, ρ will
be a small positive number and the sequence will converge very slowly.1

Next, we discuss the behaviour of the iteration (1.3) in the vicinity of
an unstable fixed point ξ. If |g′(ξ)| > 1, then the sequence (xk) defined
by (1.3) does not converge to ξ from any starting value x0; the next
theorem gives a rigorous proof of this fact.

Theorem 1.6 Suppose that ξ = g(ξ), where the function g has a con-
tinuous derivative in some neighbourhood of ξ, and let |g′(ξ)| > 1. Then,
the sequence (xk) defined by xk+1 = g(xk), k ≥ 0, does not converge to
ξ from any starting value x0, x0 �= ξ.

Proof Suppose that x0 �= ξ. As in the proof of Theorem 1.5, we can see
that there is an interval Iδ = [ξ−δ, ξ+δ], δ > 0, in which |g′(x)| ≥ L > 1
for some constant L. If xk lies in this interval, then

|xk+1 − ξ| = |g(xk) − g(ξ)| = |(xk − ξ) g′(ηk)| ≥ L|xk − ξ| ,

for some ηk between xk and ξ. If xk+1 lies in Iδ the same argument
shows that

|xk+2 − ξ| ≥ L|xk+1 − ξ| ≥ L2|xk − ξ| ,

and so on. Evidently, after a finite number of steps some member of
the sequence xk+1, xk+2, xk+3, . . . must be outside the interval Iδ, since
L > 1. Hence there can be no value of k0 = k0(δ) such that |xk − ξ| ≤ δ

for all k ≥ k0, and the sequence therefore does not converge to ξ.

Example 1.5 In this example we explore the simple iteration (1.3) for
g defined by

g(x) = 1
2 (x2 + c)

where c ∈ R is a fixed constant.

The fixed points of the function g are the solutions of the quadratic
equation x2 − 2x + c = 0, which are 1 ± √

(1 − c). If c > 1 there are no
solutions (in the set R of real numbers, that is!), if c = 1 there is one
solution in R, and if c < 1 there are two.
1 Thus 0 < ρ � 1 corresponds to slow linear convergence and ρ � 1 to fast linear
convergence. It is for this reason that we defined the asymptotic rate of conver-
gence ρ, for a linearly convergent sequence, as − log10 µ (or − log10 |g′(ξ)|) rather
than µ (or |g′(ξ)| ) .
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Suppose now that c < 1; we denote the solutions by ξ1 = 1−√
(1− c)

and ξ2 = 1+
√

(1−c), so that ξ1 < 1 < ξ2. We see at once that g′(x) = x,
so the fixed point ξ2 is unstable, but that the fixed point ξ1 is stable
provided that −3 < c < 1. In fact, it is easy to see that the sequence
(xk) defined by the iteration xk+1 = g(xk), k ≥ 0, will converge to ξ1

if the starting value x0 satisfies −ξ2 < x0 < ξ2. (See Exercise 1.) If
c is close to 1, g′(ξ1) will also be close to 1 and convergence will be
slow. When c = 0, ξ1 = 0 so that convergence is superlinear. This is an
example of quadratic convergence which we shall meet later. �

The purpose of our next example is to illustrate the concept of asymp-
totic rate of convergence. According to Definition 1.4, the asymptotic
rate of convergence of a sequence describes the relative closeness of suc-
cessive terms in the sequence to the limit ξ as k → ∞. Of course, for
small values of k the sequence may behave in quite a different way, and
since in practical computation we are interested in approximating the
limit of the sequence by using just a small number of terms, the asymp-
totic rate of convergence may sometimes give a misleading impression.

Example 1.6 In this example we study the convergence of the sequences
(uk) and (vk) defined by

uk+1 = g1(uk), k = 0, 1, 2, . . . , u0 = 1 ,

vk+1 = g2(vk), k = 0, 1, 2, . . . , v0 = 1 ,

where

g1(x) = 0.99x and g2(x) =
x

(1 + x1/10)10
.

Each of the two functions has a fixed point at ξ = 0, and we easily find
that g′1(0) = 0.99, g′2(0) = 1. Hence the sequence (uk) is linearly con-
vergent to zero with asymptotic rate of convergence ρ = − log10 0.99 ≈
0.004, while Theorem 1.5 does not apply to the sequence (vk). It is quite
easy to show by induction that vk = (k + 1)−10, so the sequence (vk)
also converges to zero, but since limk→∞(vk+1/vk) = 1 the convergence
is sublinear. This means that, in the limit, (uk) will converge faster than
(vk). However, this is not what happens for small k, as Table 1.2 shows
very clearly.

The sequence (vk) has converged to zero correct to 6 decimal digits
when k = 4, and to 10 decimal digits when k = 10, at which stage uk
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Table 1.2. The sequences (uk) and (vk) in Example 1.6.

k uk vk

0 1.000000 1.000000
1 0.990000 0.000977
2 0.980100 0.000017
3 0.970299 0.000001
4 0.960596 0.000000
5 0.950990 0.000000
6 0.941480 0.000000
7 0.932065 0.000000
8 0.922745 0.000000
9 0.913517 0.000000

10 0.904382 0.000000

is still larger than 0.9. Although (uk) eventually converges faster than
vk, we find that uk = (0.99)k becomes smaller than vk = (k + 1)−10

when

k >
10

ln(1/0.99)
ln(k + 1) .

This first happens when k = 9067, at which point uk and vk are both
roughly 10−40. In this rather extreme example the concept of asymptotic
rate of convergence is not useful, since for any practical purposes (vk)
converges faster than (uk). �

1.3 Iterative solution of equations

In this section we apply the idea of simple iteration to the solution
of equations. Given a real-valued continuous function f , we wish to
construct a sequence (xk), using iteration, which converges to a solution
of f(x) = 0. We begin with an example where it is easy to derive
various such sequences; in the next section we shall describe a more
general approach.

Example 1.7 Consider the problem of determining the solutions of the
equation f(x) = 0, where f : x �→ ex − x − 2.

Since f ′(x) = ex − 1 the function f is monotonic increasing for positive
x and monotonic decreasing for negative values of x. Moreover,



18 1 Solution of equations by iteration

f(1) = e − 3 < 0 ,

f(2) = e2 − 4 > 0 ,

f(−1) = e−1 − 1 < 0 ,

f(−2) = e−2 > 0 .


 (1.16)

Hence the equation f(x) = 0 has exactly one positive solution, which
lies in the interval (1, 2), and exactly one negative solution, which lies in
the interval (−2,−1). This is illustrated in Figure 1.4, which shows the
graphs of the functions x �→ ex and x �→ x + 2 on the same axes. We
shall write ξ1 for the positive solution and ξ2 for the negative solution.
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Fig. 1.4. Graphs of y = ex and y = x+ 2.

The equation f(x) = 0 may be written in the equivalent form

x = ln(x + 2) ,

which suggests a simple iteration defined by g(x) = ln(x + 2). We shall
show that the positive solution ξ1 is a stable fixed point of g, while ξ2 is
an unstable fixed point of g.

Clearly, g′(x) = 1/(x + 2), so 0 < g′(ξ1) < 1, since ξ1 is the positive
solution. Therefore, by Theorem 1.5, the sequence (xk) defined by the
iteration

xk+1 = ln(xk + 2) , k = 0, 1, 2, . . . , (1.17)
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will converge to the positive solution, ξ1, provided that the starting value
x0 is sufficiently close to it.1 As 0 < g′(ξ1) < 1/3, the asymptotic rate
of convergence of (xk) to ξ1 is certainly greater than log10 3.

On the other hand, g′(ξ2) > 1 since −2 < ξ2 < −1, so the sequence
(xk) defined by (1.17) cannot converge to the solution ξ2. It is not
difficult to prove that for x0 > ξ2 the sequence (xk) converges to ξ1 while
if x0 < ξ2 the sequence will decrease monotonically until xk ≤ −2 for
some k, and then the iteration breaks down as g(xk) becomes undefined.

The equation f(x) = 0 may also be written in the form x = ex − 2,
suggesting the sequence (xk) defined by the iteration

xk+1 = exk − 2 , k = 0, 1, 2, . . . .

In this case g(x) = ex−2 and g′(x) = ex. Hence g′(ξ1) > 1, g′(ξ2) < e−1,
showing that the sequence (xk) may converge to ξ2, but cannot converge
to ξ1. It is quite straightforward to show that the sequence converges to
ξ2 for any x0 < ξ1, but diverges to +∞ when x0 > ξ1.

As a third alternative, consider rewriting the equation f(x) = 0 as
x = g(x) where the function g is defined by g(x) = x(ex − x)/2; the
fixed points of the associated iteration xk+1 = g(xk) are the solutions ξ1

and ξ2 of f(x) = 0, and also the point 0. For this iteration neither of the
fixed points, ξ1 or ξ2, is stable, and the sequence (xk) either converges
to 0 or diverges to ±∞.

Evidently the given equation may be written in many different forms,
leading to iterations with different properties. �

1.4 Relaxation and Newton’s method

In the previous section we saw how various ingenious devices lead to
iterations which may or may not converge to the desired solutions of a
given equation f(x) = 0. We would obviously benefit from a more gener-
ally applicable iterative method which would, except possibly in special
cases, produce a sequence (xk) that always converges to a required so-
lution. One way of constructing such a sequence is by relaxation.
1 In fact, by applying the Contraction Mapping Theorem on an arbitrary bounded
closed interval [0,M ] where M > ξ1, we conclude that the sequence (xk) defined
by the iteration (1.17) will converge to ξ1 from any positive starting value x0.
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Definition 1.5 Suppose that f is a real-valued function, defined and
continuous in a neighbourhood of a real number ξ. Relaxation uses the
sequence (xk) defined by

xk+1 = xk − λf(xk) , k = 0, 1, 2, . . . , (1.18)

where λ �= 0 is a fixed real number whose choice will be made clear below,
and x0 is a given starting value near ξ.

If the sequence (xk) defined by (1.18) converges to ξ, then ξ is a
solution of the equation f(x) = 0, as we assume that f is continuous.

It is clear from (1.18) that relaxation is a simple iteration of the form
xk+1 = g(xk), k = 0, 1, 2, . . ., with g(x) = x − λf(x). Suppose now,
further, that f is differentiable in a neighbourhood of ξ. It then follows
that g′(x) = 1−λf ′(x) for all x in this neighbourhood; hence, if f(ξ) = 0
and f ′(ξ) �= 0, the sequence (xk) defined by the iteration xk+1 = g(xk),
k = 0, 1, 2, . . ., will converge to ξ if we choose λ to have the same sign as
f ′(ξ), to be not too large, and take x0 sufficiently close to ξ. This idea
is made more precise in the next theorem.

Theorem 1.7 Suppose that f is a real-valued function, defined and
continuous in a neighbourhood of a real number ξ, and let f(ξ) = 0.
Suppose further that f ′ is defined and continuous in some neighbourhood
of ξ, and let f ′(ξ) �= 0. Then, there exist positive real numbers λ and
δ such that the sequence (xk) defined by the relaxation iteration (1.18)
converges to ξ for any x0 in the interval [ξ − δ, ξ + δ].

Proof Suppose that f ′(ξ) = α, and that α is positive. If f ′(ξ) is neg-
ative, the proof is similar, with appropriate changes of sign. Since f ′

is continuous in some neighbourhood of ξ, we can find a positive real
number δ such that f ′(x) ≥ 1

2α in the interval [ξ−δ, ξ+δ]. Let M be an
upper bound for f ′(x) in this interval. Hence M ≥ 1

2α. In order to fix
the value of the real number λ, we begin by noting that, for any λ > 0,

1 − λM ≤ 1 − λf ′(x) ≤ 1 − 1
2λα , x ∈ [ξ − δ, ξ + δ] .

We now choose λ so that these extreme values are equal and opposite,
i.e., 1 − λM = −ϑ and 1 − 1

2λα = ϑ for a suitable nonnegative real
number ϑ. There is a unique value of ϑ for which this holds; it is given
by the formula

ϑ =
2M − α

2M + α
,
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corresponding to

λ =
4

2M + α
.

On defining g(x) = x − λf(x), we then deduce that

|g′(x)| ≤ ϑ < 1 , x ∈ [ξ − δ, ξ + δ] . (1.19)

Thus we can apply Theorem 1.5 to conclude that the sequence (xk)
defined by the relaxation iteration (1.18) converges to ξ, provided that
x0 is in the interval [ξ − δ, ξ + δ]. The asymptotic rate of convergence of
the relaxation iteration (1.18) to ξ is at least − log10 ϑ.

We can now extend the idea of relaxation by allowing λ to be a contin-
uous function of x in a neighbourhood of ξ rather than just a constant.
This suggests an iteration

xk+1 = xk − λ(xk)f(xk) , k = 0, 1, 2, . . . ,

corresponding to a simple iteration with g(x) = x − λ(x)f(x). If the
sequence (xk) converges, the limit ξ will be a solution of f(x) = 0,
except possibly when λ(ξ) = 0. Moreover, as we have seen, the ultimate
rate of convergence is determined by g′(ξ). Since f(ξ) = 0, it follows
that g′(ξ) = 1 − λ(ξ)f ′(ξ), and (1.19) suggest using a function λ which
makes 1 − λ(ξ)f ′(ξ) small. The obvious choice is λ(x) = 1/f ′(x), and
leads us to Newton’s method.1

Definition 1.6 Newton’s method for the solution of f(x) = 0 is defined
by

xk+1 = xk − f(xk)
f ′(xk)

, k = 0, 1, 2, . . . , (1.20)

with prescribed starting value x0. We implicitly assume in the defining
formula (1.20) that f ′(xk) �= 0 for all k ≥ 0.
1 Isaac Newton was born on 4 January 1643 in Woolsthorpe, Lincolnshire, England
and died on 31 March 1727 in London, England. According to the calendar used
in England at the time, Newton was born on Christmas day 1642, and died on
21 March 1727: the Gregorian calendar was not adopted in England until 1752.
Newton made revolutionary advances in mathematics, physics, astronomy and
optics; his contributions to the foundations of calculus were marred by priority
disputes with Leibniz. Newton was appointed to the Lucasian chair at Cambridge
at the age of 27. In 1705, two years after becoming president of the Royal So-
ciety (a position to which he was re-elected each year until his death), Newton
was knighted by Queen Anne; he was the first scientist to be honoured in this
way. Newton’s Philosophiae naturalis principia mathematica is one of the most
important scientific books ever written.
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Newton’s method is a simple iteration with g(x) = x − f(x)/f ′(x).
Its geometric interpretation is illustrated in Figure 1.5: the tangent to
the curve y = f(x) at the point (xk, f(xk)) is the line with the equation
y − f(xk) = f ′(xk)(x − xk); it meets the x-axis at the point (xk+1, 0).

✲x

✻y
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Fig. 1.5. Newton’s method.

We could apply Theorem 1.5 to prove the convergence of this iteration,
but since generally it converges much faster than ordinary relaxation it
is better to apply a special form of proof. First, however, we give a
formal definition of quadratic convergence.

Definition 1.7 Suppose that ξ = limk→∞ xk. We say that the sequence
(xk) converges to ξ with at least order q > 1, if there exist a sequence
(εk) of positive real numbers converging to 0, and µ > 0, such that

|xk − ξ| ≤ εk , k = 0, 1, 2, . . . , and lim
k→∞

εk+1

εqk
= µ . (1.21)

If (1.21) holds with εk = |xk − ξ| for k = 0, 1, 2, . . ., then the sequence
(xk) is said to converge to ξ with order q. In particular, if q = 2, then
we say that the sequence (xk) converges to ξ quadratically.
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We note that unlike the definition of linear convergence where µ was
required to belong to the interval (0, 1), all we demand here is that µ > 0.
The reason is simple: when q > 1, (1.21) implies suitably rapid decay of
the sequence (εk) irrespective of the size of µ.

Example 1.8 Let c > 1 and q > 1. The sequence (xk) defined by
xk = c−q

k

, k = 0, 1, 2, . . ., converges to 0 with order q.

Theorem 1.8 (Convergence of Newton’s method) Suppose that
f is a continuous real-valued function with continuous second derivative
f ′′, defined on the closed interval Iδ = [ξ − δ, ξ + δ], δ > 0, such that
f(ξ) = 0 and f ′′(ξ) �= 0. Suppose further that there exists a positive
constant A such that

|f ′′(x)|
|f ′(y)| ≤ A ∀x, y ∈ Iδ .

If |ξ − x0| ≤ h, where h is the smaller of δ and 1/A, then the sequence
(xk) defined by Newton’s method (1.20) converges quadratically to ξ.

Proof Suppose that |ξ − xk| ≤ h = min{δ, 1/A}, so that xk ∈ Iδ. Then,
by Taylor’s Theorem (Theorem A.4), expanding about the point xk ∈ Iδ,

0 = f(ξ) = f(xk) + (ξ − xk)f ′(xk) +
(ξ − xk)2

2
f ′′(ηk) , (1.22)

for some ηk between ξ and xk, and therefore in the interval Iδ. Recalling
(1.20), this shows that

ξ − xk+1 = − (ξ − xk)2f ′′(ηk)
2f ′(xk)

. (1.23)

Since |ξ−xk| ≤ 1
A , we have |ξ−xk+1| ≤ 1

2 |ξ−xk|. As we are given that
|ξ − x0| ≤ h it follows by induction that |ξ − xk| ≤ 2−kh for all k ≥ 0;
hence (xk) converges to ξ as k → ∞.

Now, ηk lies between ξ and xk, and therefore (ηk) also converges to ξ

as k → ∞. Since f ′ and f ′′ are continuous on Iδ, it follows from (1.23)
that

lim
k→∞

|xk+1 − ξ|
|xk − ξ|2 =

∣∣∣∣ f ′′(ξ)
2f ′(ξ)

∣∣∣∣ , (1.24)

which, according to Definition 1.7, implies quadratic convergence of the
sequence (xk) to ξ with µ = |f ′′(ξ)/2f ′(ξ)|, µ ∈ (0, A/2].
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The conditions of the theorem implicitly require that f ′(ξ) �= 0, for
otherwise the quantity f ′′(x)/f ′(y) could not be bounded in a neighbour-
hood of ξ. (See Exercises 6 and 7 for what happens when f ′(ξ) = 0.)

One can show that if f ′′(ξ) = 0 and we assume that f(x) has a con-
tinuous third derivative, and require certain quantities to be bounded,
then the convergence is cubic (i.e., convergence with order q = 3).

It is possible to demonstrate that Newton’s method converges over a
wider interval, if we assume something about the signs of the derivatives.

Theorem 1.9 Suppose that the function f satisfies the conditions of
Theorem 1.8 and also that there exists a real number X, X > ξ, such
that in the interval J = [ξ,X] both f ′ and f ′′ are positive. Then, the
sequence (xk) defined by Newton’s method (1.20) converges quadratically
to ξ from any starting value x0 in J .

Proof It follows from (1.23) that if xk ∈ J , then xk+1 > ξ. Moreover,
since f ′(x) > 0 on J , f is monotonic increasing on J . As f(ξ) = 0, it
then follows that f(x) > 0 for ξ < x ≤ X. Hence, ξ < xk+1 < xk,
k ≥ 0. Since the sequence (xk) is bounded and monotonic decreasing,
it is convergent; let η = limk→∞ xk. Clearly, η ∈ J . Further, passing to
the limit k → ∞ in (1.20) we have that f(η) = 0. However, ξ is the only
solution of f(x) = 0 in J , so η = ξ, and the sequence converges to ξ.

Having shown that the sequence (xk) converges, the fact that it con-
verges quadratically follows as in the proof of Theorem 1.8.

We remark that the same result holds for other possible signs of f ′

and f ′′ in a suitable interval J . (See Exercise 8.) The interval J does
not have to be bounded; considering, for instance, f(x) = ex − x − 2
from Example 1.7, it is clear that f ′(x) and f ′′(x) are both positive in
the unbounded interval (0,∞), and the Newton iteration converges to
the positive solution of the equation f(x) = 0 from any positive starting
value x0.

Note that the definition of quadratic convergence only refers to the
behaviour of the sequence for sufficiently large k. In the same example we
find that the convergence of the Newton iteration from a large positive
value of x0 is initially very slow. (See Exercise 3.) The possibility of
this early behaviour is often emphasised by saying that the convergence
of Newton’s method is ultimately quadratic.



1.5 The secant method 25

1.5 The secant method

So far we have considered iterations which can be written in the form
xk+1 = g(xk), k ≥ 0, so that the new value is expressed in terms of the
old one. It is also possible to define an iteration of the form xk+1 =
g(xk, xk−1), k ≥ 1, where the new value is expressed in terms of two
previous values. In particular, we shall consider two applications of
this idea, leading to the secant method and the method of bisection,
respectively.

Remark 1.3 We note in passing that one can consider more general
iterative methods of the form

xk+1 = g(xk, xk−1, . . . , xk−�) , k = $, $ + 1, . . . ,

with $ ≥ 1 fixed; here, we shall confine ourselves to the simplest case
when $ = 1 as this is already sufficiently illuminating.

Using Newton’s method to solve a nonlinear equation f(x) = 0 re-
quires explicit knowledge of the first derivative f ′ of the function f .
Unfortunately, in many practical situations f ′ is not explicitly available
or it can only be obtained at high computational cost. In such cases,
the value f ′(xk) in (1.20) can be approximated by a difference quotient;
that is,

f ′(xk) ≈ f(xk) − f(xk−1)
xk − xk−1

.

Replacing f ′(xk) in (1.20) by this difference quotient leads us to the
following definition.

Definition 1.8 The secant method is defined by

xk+1 = xk − f(xk)
(

xk − xk−1

f(xk) − f(xk−1)

)
, k = 1, 2, 3, . . . , (1.25)

where x0 and x1 are given starting values. It is implicitly assumed here
that f(xk) − f(xk−1) �= 0 for all k ≥ 1.

The method is illustrated in Figure 1.6. The new iterate xk+1 is
obtained from xk−1 and xk by drawing the chord joining the points
P (xk−1, f(xk−1)) and Q(xk, f(xk)), and using as xk+1 the point at which
this chord intersects the x-axis. If xk−1 and xk are close together and f
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✲

✻

�

�

�

P

Q

R

� �

x

y

Fig. 1.6. Secant method.

is differentiable, xk+1 is approximately the same as the value supplied
by Newton’s method, which uses the tangent at the point Q.

Theorem 1.10 Suppose that f is a real-valued function, defined and
continuously differentiable on an interval I = [ξ − h, ξ + h], h > 0,
with centre point ξ. Suppose further that f(ξ) = 0, f ′(ξ) �= 0. Then,
the sequence (xk) defined by the secant method (1.25) converges at least
linearly to ξ provided that x0 and x1 are sufficiently close to ξ.

Proof Since f ′(ξ) �= 0, we may suppose that f ′(ξ) = α > 0; only minor
changes are needed in the proof when f ′(ξ) is negative. Since f ′ is
continuous on I, corresponding to any ε > 0 we can choose an interval
Iδ = [ξ − δ, ξ + δ], with 0 < δ ≤ h, such that

|f ′(x) − α| < ε , x ∈ Iδ . (1.26)

Choosing ε = 1
4α we see that

0 < 3
4α < f ′(x) < 5

4α , x ∈ Iδ . (1.27)

From (1.25) and using the Mean Value Theorem (Theorem A.3) together
with the fact that f(ξ) = 0, we obtain

ξ − xk+1 = ξ − xk +
(xk − ξ)f ′(ϑk)

f ′(ϕk)
, (1.28)



1.5 The secant method 27

Table 1.3. Comparison of the secant method and Newton’s method for
the solution of ex − x − 2 = 0.

Secant method Newton’s method

0 1.000000 1.000000
1 3.000000 1.163953
2 1.036665 1.146421
3 1.064489 1.146193
4 1.153299 1.146193
5 1.145745
6 1.146191
7 1.146193

where ϑk is between xk and ξ, and ϕk lies between xk and xk−1. Hence,
if xk−1 ∈ Iδ and xk ∈ Iδ, then also ϑk ∈ Iδ and ϕk ∈ Iδ. Therefore,

|ξ − xk+1| ≤ |ξ − xk|
∣∣∣∣1 − 5α/4

3α/4

∣∣∣∣ = 2
3 |ξ − xk| . (1.29)

Thus, xk+1 ∈ Iδ and the sequence (xk) converges to ξ at least linearly,
with rate at least log10(3/2), provided that x0 ∈ Iδ and x1 ∈ Iδ.

In fact, it can be shown that

lim
k→∞

|xk+1 − ξ|
|xk − ξ|q = µ (1.30)

where µ is a positive constant and q = 1
2 (1 +

√
5) ≈ 1.6, so that the

convergence of the sequence (xk) to ξ is faster than linear, but not as
fast as quadratic. (See Exercise 10.)

This is illustrated in Table 1.3, which compares two iterative methods
for the solution of f(x) = 0 with f : x �→ ex−x−2; the first is the secant
method, starting from x0 = 1, x1 = 3, while the second is Newton’s
method starting from x0 = 1.

This experiment shows the faster convergence of Newton’s method,
but it must be remembered that each iteration of Newton’s method
requires the calculation of both f(xk) and f ′(xk), while each iteration
of the secant method requires the calculation of f(xk) only (as f(xk−1)
has already been computed). In our examples the computations are
quite trivial, but in a practical situation the calculation of each value of
f(xk) and f ′(xk) may demand a substantial amount of work, and then
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each iteration of Newton’s method is likely to involve at least twice as
much work as one iteration of the secant method.

1.6 The bisection method

Suppose that f is a real-valued function defined and continuous on a
bounded closed interval [a, b] of the real line and such that f(ξ) = 0
for some ξ ∈ [a, b]. A very simple iterative method for the solution of
the nonlinear equation f(x) = 0 can be constructed by beginning with
an interval [a0, b0] which is known to contain the required solution ξ

(e.g., one may choose [a0, b0] as the interval [a, b] itself, with a0 = a and
b0 = b), and successively halving its size.

More precisely, we proceed as follows. Let k ≥ 0, and suppose that it is
known that f(ak) and f(bk) have opposite signs; we then conclude from
Theorem 1.1 that the interval (ak, bk) contains a solution of f(x) = 0.
Consider the midpoint ck of the interval (ak, bk) defined by

ck = 1
2 (ak + bk) , (1.31)

and evaluate f(ck). If f(ck) is zero, then we have located a solution ξ

of f(x) = 0, and the iteration stops. Else, we define the new interval
(ak+1, bk+1) by

(ak+1, bk+1) =
{

(ak, ck) if f(ck)f(bk) > 0 ,

(ck, bk) if f(ck)f(bk) < 0 ,
(1.32)

and repeat this procedure.
This may at first seem to be a very crude method, but it has some

important advantages. The analysis of convergence is trivial; the size of
the interval containing ξ is halved at each iteration, so the sequence (ck)
defined by the bisection method converges linearly, with rate ρ = log10 2.
Even Newton’s method may often converge more slowly than this in the
early stages, when the starting value is far from the desired solution.
Moreover, the convergence analysis assumes only that the function f is
continuous, and requires no bounds on the derivatives, nor even their
existence.1 Once we can find an interval [a0, b0] such that f(a0) and
f(b0) have opposite signs, we can guarantee convergence to a solution,
and that after k iterations the solution ξ will lie in an interval of length
1 Consider, for example, solving the equation f(x) = 0, where the function f is
defined by (1.2). Even though f is not differentiable at the point x = 1.05, the
bisection method is applicable. It has to be noted, however, that for functions of
this kind it is not always easy to find an interval [a0, b0] in which f changes sign.
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Fig. 1.7. Bisection; from the initial interval [a0, b0] the next interval is [a0, c0],
but starting from [a0, b

∗
0] the next interval is [c∗0, b

∗
0].

(b0 − a0)/2k. The bisection method is therefore very robust, though
Newton’s method will always win once the current iterate is sufficiently
close to ξ.

If the initial interval [a0, b0] contains more than one solution, the limit
of the bisection method will depend on the positions of these solutions.
Figure 1.7 illustrates a possible situation, where [a0, b0] contains three
solutions. Since f(c0) has the same sign as f(b0) the second interval is
[a0, c0], and the sequence (ck) of midpoints defined by (1.31) converges
to the solution ξ1. If however the initial interval is [a0, b

∗
0] the sequence

of midpoints converges to the solution ξ3.

1.7 Global behaviour

We have already seen how an iteration will often converge to a limit
if the starting value is sufficiently close to that limit. The behaviour
of the iteration, when started from an arbitrary starting value, can be
very complicated. In this section we shall consider two examples. No
theorems will be stated: our aim is simply to illustrate various kinds of
behaviour.
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First consider the simple iteration defined by

xk+1 = g(xk) , k = 0, 1, 2, . . . , where g(x) = a x(1 − x) , (1.33)

which is often known as the logistic equation. We require the constant
a to lie in the range 0 < a ≤ 4, for then if the starting value x0 is in
the interval [0, 1], then all members of the sequence (xk) also lie in [0, 1].
The function g has two fixed points: x = 0 and x = 1 − 1/a. The fixed
point at 0 is stable if 0 < a < 1, and the fixed point at 1 − 1/a is stable
if 1 < a < 3. The behaviour of the iteration for these values of a is what
might be expected from this information, but for larger values of the
parameter a the behaviour of the sequence (xk) becomes increasingly
complicated.

For example, when a = 3.4 there is no stable fixed point, and from
any starting point the sequence eventually oscillates between two values,
which are 0.45 and 0.84 to two decimal digits. These are the two stable
fixed points of the double iteration

xk+1 = g∗(xk) , g∗(x) = g(g(x)) = a2x(1−x)[1−ax(1−x)] . (1.34)

When 3 < a < 1 +
√

6, the fixed points of g∗ are the two fixed points of
g, that is 0 and 1 − 1/a, and also

1
2

(
1 +

1
a

± 1
a

[
a2 − 2a − 3

]1/2)
. (1.35)

This behaviour is known as a stable two-cycle (see Exercise 12).
When a > 1+

√
6 all the fixed points of g∗ are unstable. For example,

when a = 3.5 all sequences (xk) defined by (1.33) tend to a stable 4-cycle,
taking successive values 0.50, 0.87, 0.38 and 0.83.

For larger values of the parameter a the sequences become chaotic.
For example, when a = 3.99 there are no stable fixed points or limit-
cycles, and the members of any sequence appear random. In fact it can
be shown that for such values of a the members of the sequence are
dense in a subinterval of [0, 1]: there exist real numbers α and β, α < β,
such that any subinterval of (α, β), however small, contains an infinite
subsequence of (xk). For the value a = 3.99 the maximal interval (α, β)
is (0.00995, 0.99750) to five decimal digits. Starting from x0 = 0.75 we
find that the interval (0.70, 0.71), for example, contains the subsequence

x16, x164, x454, x801, x812, . . . . (1.36)

The sequence does not show any apparent regular behaviour. The cal-
culation is extremely sensitive: if we replace x0 by x0 + δx0, and write
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Fig. 1.8. Global behaviour of Newton’s method.

xk + δxk for the resulting perturbed value of xk, it is easy to see that

δxk+1 = a(1 − 2xk)δxk ,

provided that the changes δxk are so small that a(δxk)2 can be ig-
nored. With x0 = 0.75 as above we find from the same calculation that
δx812/δx0 is about 10231, so that to determine x812 with reasonable ac-
curacy it is necessary to carry through the whole calculation using 250
decimal digits.

Our second example, of more practical importance, is of Newton’s
method applied to a function f with several zeros. The example is

f(x) = x(x2 − 1)(x − 3) exp(− 1
2 (x − 1)2) ; (1.37)

the graph of the function is shown in Figure 1.8. The function has zeros
at −1, 0, 1 and 3. The sequence generated by the Newton iteration will
converge to one of these solutions if the starting value is fairly close to it.
Moreover, the geometric interpretation of the iteration shows that if the
starting point is sufficiently large in absolute value the iteration diverges
rapidly to ∞; the iteration behaves as if the function had a zero at
infinity, and the sequence can be loosely described as ‘converging to ∞’.
With this interpretation some numerical experimentation soon shows
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that from any starting value Newton’s method eventually converges to a
solution, which might be ±∞. However, it is certainly not true that the
sequence converges to the solution closest to the starting point; indeed,
if this were true, no sequence could converge to ∞. It is easy to see why
the behaviour is much more complicated than this.

The Newton iteration converges to the solution at 0 from any point in
the interval (−0.327, 0.445). As we see from Figure 1.8, the iteration will
converge exactly to 0 in one iteration if we start from the x-coordinate
of any of the points a1, a2 and a3; at each of these three points the
tangent to the curve passes through the origin. Since f is continuous,
this means that there is an open interval surrounding each of these points
from which the Newton iteration will converge to 0. The maximal such
intervals are (−1.555,−1.487), (1.735, 1.817) and (3.514, 3.529) to three
decimal digits. In the same way, there are several points at which the
tangent to the curve passes through the point (A1, 0), where A1 is the
x-coordinate of the point a1. Starting from one of these points, the
Newton iteration will evidently converge exactly to the solution at 0 in
two steps; surrounding each of these points there is an open interval
from which the iteration will converge to 0.

Now suppose we define the sets Sm, m = −1, 0, 1, 3,∞,−∞, where
Sm consists of those points from which the Newton iteration converges
to the zero at m. Then, an extension of the above argument shows
that each of the sets Sm is the union of an infinite number of disjoint
open intervals. The remarkable property of these sets is that, if ξ is a
boundary point of one of the sets Sm, then it is also a boundary point of
all the other sets as well. This means that any neighbourhood of such a
point ξ, however small, contains an infinite number of members of each
of the sets Sm. For example, we have seen that the iteration starting
from any point in the interval (−0.327, 0.445) converges to 0. We find
that the end of this interval lies between 0.4457855 and 0.4457860; Table
1.4 shows the limits of various Newton iterations starting from points
near this boundary. Each of these points is, of course, itself surrounded
by an open interval which gives the same limit.

1.8 Notes

Theorem 1.2 is a special case of Brouwer’s Fixed Point Theorem. Luitzen
Egbertus Jan Brouwer (1881–1966) was professor of set theory, function
theory and axiomatics at the University of Amsterdam, and made major
contributions to topology. Brouwer was a mathematical genius with
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Table 1.4. Limit of Newton’s method near a boundary point.

x0 Limit

0.4457840 0
0.4457845 0
0.4457850 0
0.4457855 0
0.4457860 1
0.4457865 −∞
0.4457870 −1
0.4457875 −1
0.4457880 −∞
0.4457885 −∞
0.4457890 +∞
0.4457895 3
0.4457900 1

strong mystical and philosophical leanings. For an historical overview of
Brouwer’s life and work we refer to the recent book of Dirk Van Dalen,
Mystic, Geometer, and Intuitionist. The Life of L.E.J. Brouwer: the
Dawning Revolution, Clarendon Press, Oxford, 1999.

The Contraction Mapping Theorem, as stated here, is a simplified ver-
sion of Banach’s fixed point theorem. Stefan Banach1 founded modern
functional analysis and made outstanding contributions to the theory
of topological vector spaces, measure theory, integration, the theory of
sets, and orthogonal series. For an inspiring account of Banach’s life
and times, see R. Kaluza, Through the Eyes of a Reporter: the Life of
Stefan Banach, Birkhäuser, Boston, MA, 1996.

In our definitions of linear convergence and convergence with order q,
we followed Definitions 2.1 and 2.2 in Chapter 4 of

➧ Walter Gautschi, Numerical Analysis: an Introduction, Birkhäuser,
Boston, MA, 1997.

Exciting surveys of the history of Newton’s method are available in T.
Ypma, Historical development of the Newton–Raphson method, SIAM
Rev. 37, 531–551, 1995, H. Goldstine, History of Numerical Analysis
from the Sixteenth through the Nineteenth Century, Springer, New York,
1977; and in Chapter 6 of Jean-Luc Chabert (Editor), A History of Algo-
rithms from the Pebble to the Microchip, Springer, New York, 1999. As
1 30 March 1892, Kraków, Austria–Hungary (now in Poland) – 31 August 1945,
Lvov, Ukraine, USSR (now independent).
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is noted in these sources, Newton’s De analysi per aequationes numero
terminorum infinitas, probably dating from mid-1669, is sometimes re-
garded as the historical source of the method, despite the fact that,
surprisingly, there is no trace in this tract of the familiar recurrence re-
lation xk+1 = xk − f(xk)/f ′(xk) bearing Newton’s name, nor is there
a mention of the idea of derivative. Instead, the paper contains an ex-
ample of a cubic polynomial whose roots are found by purely algebraic
and rather complicated substitutions. In 1690, Joseph Raphson (1648–
1715) in the Preface to his Analysis aequationum universalis describes
his version of Newton’s method as ‘not only, I believe, not of the same
origin, but also, certainly, not with the same development’ as Newton’s
method. Further improvements to the method, and its form as we know
it today, were given by Thomas Simpson in his Essays in Mathematicks
(1740). Simpson presents it as ‘a new method for the solution of equa-
tions’ using the ‘method of fluxions’, i.e., derivatives. It is argued in
Ypma’s article that Simpson’s contributions to this subject have been
underestimated, and ‘it would seem that the Newton–Raphson–Simpson
method is a designation more nearly representing facts of history of this
method which lurks inside millions of modern computer programs and
is printed with Newton’s name attached in so many textbooks’.

The convergence analysis of Newton’s method was initiated in the
first half of the twentieth century by L.V. Kantorovich.1 More recently,
Smale,2 Dedieu and Shub,3 and others have provided significant insight
into the properties of Newton’s method. A full discussion of the global
behaviour of the logistic equation (1.33), and other examples, will be
found in P.G. Drazin, Nonlinear Systems, Cambridge University Press,
Cambridge, 1992, particularly Chapters 1 and 3.

The secant method is also due to Newton (cf. Section 3 of Ypma’s
paper cited above), and is found in a collection of unpublished notes
termed ‘Newton’s Waste Book’ written around 1665.

In this chapter, we have been concerned with the iterative solution of
equations for a real-valued function of a single real variable. In Chapter
4, we shall discuss the iterative solution of nonlinear systems of equations
1 L.V. Kantorovich, Functional analysis and applied mathematics, Uspekhi Mat.

Nauk 3, 89–185, 1948; English transl., Rep. 1509, National Bureau of Standards,
Washington, DC, 1952.

2 Steve Smale, Newton’s method estimates from data at one point, in The Merging
of Disciplines: New Directions in Pure, Applied and Computational Mathematics,
R. Ewing, K. Gross, C. Martin, Eds., Springer, New York, 185–196, 1986.

3 Jean-Pierre Dedieu and Michael Shub, Multihomogeneous Newton methods, Math.
Comput. 69 (231), 1071–1098, 2000.
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of the form f(x) = 0 where f : R
n → R

n. There, corresponding to the
case of n = 2, we shall say more about the solution of equations of the
form f(z) = 0 where f is a complex-valued function of a single complex
variable z.

This chapter has been confined to generally applicable iterative meth-
ods for the solution of a single nonlinear equation of the form f(x) = 0
for a real-valued function f of a single real variable. In particular, we
have not discussed specialised methods for the solution of polynomial
equations or the various techniques for locating the roots of polynomi-
als in the complex plane and on the real line (by Budan and Fourier,
Descartes, Hurwitz, Lobachevskii, Newton, Schur and others), although
in Chapter 5 we shall briefly touch on one such polynomial root-finding
method due to Sturm.1 For a historical survey of the solution of polyno-
mial equations and a review of recent advances in this field, we refer to
the article of Victor Pan, Solving a polynomial equation: some history
and recent progress, SIAM Rev. 39, 187–220, 1997.

Exercises

1.1 The iteration defined by xk+1 = 1
2 (x2

k + c), where 0 < c < 1,
has two fixed points ξ1, ξ2, where 0 < ξ1 < 1 < ξ2. Show that

xk+1 − ξ1 = 1
2 (xk + ξ1)(xk − ξ1) , k = 0, 1, 2, . . . ,

and deduce that limk→∞ xk = ξ1 if 0 ≤ x0 < ξ2. How does the
iteration behave for other values of x0?

1.2 Define the function g by g(0) = 0, g(x) = −x sin2(1/x) for
0 < x ≤ 1. Show that g is continuous, and that 0 is the only
fixed point of g in the interval [0, 1]. By considering the iteration
xn+1 = g(xn), n = 0, 1, 2, . . ., starting, first from x0 = 1/(kπ),
and then from x0 = 2/((2k + 1)π), where k is an integer, show
that according to Definition 1.3 the critical point is neither sta-
ble nor unstable.

1.3 Newton’s method is applied to the solution of

ex − x − 2 = 0 .

1 For further details in this direction, we refer to M.A. Jenkins and J.F. Traub,
A three-stage algorithm for real polynomials using quadratic iterations, SIAM J.
Numer. Anal. 7, 545–566, 1970, A.S. Householder, The Numerical Treatment of
a Single Nonlinear Equation, McGraw–Hill, New York, 1970, and A. Ralston and
P. Rabinowitz, A First Course in Numerical Analysis, Second Edition, McGraw–
Hill, New York, 1978.
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Show that if the starting value is positive, the iteration converges
to the positive solution, and if the starting value is negative it
converges to the negative solution. Obtain approximate expres-
sions for x1 if (i) x0 = 100 and (ii) x0 = −100, and describe the
subsequent behaviour of the iteration. About how many iter-
ations would be required to obtain the solution to six decimal
digits in these two cases?

1.4 Consider the iteration

xk+1 = xk − [f(xk)]2

f(xk + f(xk)) − f(xk)
, k = 0, 1, 2, . . . ,

for the solution of f(x) = 0. Explain the connection with New-
ton’s method, and show that (xk) converges quadratically if x0

is sufficiently close to the solution. Apply this method to the
same example as in Example 1.7, f(x) = ex − x − 2, and verify
quadratic convergence beginning from x0 = 1. Experiment with
calculations beginning from x0 = 10 and from x0 = −10, and
account for their behaviour.

1.5 It is sometimes said that Newton’s method converges quadrati-
cally, and therefore in the successive approximations to the so-
lution the number of correct digits doubles each time. Explain
why this is not generally correct. Suppose that f ′′(x) is defined
and continuous in a neighbourhood of ξ and that xk agrees with
the solution ξ to m decimal digits; give an estimate of the num-
ber of correct decimal digits in xk+1.

Illustrate your estimate by using Newton’s method to deter-
mine the positive zero of f(x) = ex − x− 1.000000005, which is
close to 0.0001; use x0 = 0.0005.

1.6 Suppose that f(ξ) = f ′(ξ) = 0, so that f has a double root at ξ,
and that f ′′ is defined and continuous in a neighbourhood of ξ.
If (xk) is a sequence obtained by Newton’s method, show that

ξ − xk+1 = − 1
2

(ξ − xk)2f ′′(ηk)
f ′(xk)

= 1
2 (ξ − xk)

f ′′(ηk)
f ′′(χk)

,

where ηk and χk both lie between ξ and xk. Suppose, further,
that 0 < m < |f ′′(x)| < M for all x in the interval [ξ − δ, ξ + δ]
for some δ > 0, where M < 2m; show that if x0 lies in this
interval the iteration converges to ξ, and that convergence is
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linear, with rate log10 2. Verify this conclusion by finding the
solution of ex = 1 + x, beginning from x0 = 1.

1.7 Extend the result of the previous exercise to a case where f has
a triple root at ξ, so that f(ξ) = f ′(ξ) = f ′′(ξ) = 0.

1.8 Suppose that the function f has a continuous second derivative,
that f(ξ) = 0, and that in the interval [X, ξ], with X < ξ,
f ′(x) > 0 and f ′′(x) < 0. Show that the Newton iteration,
starting from any x0 in [X, ξ], converges to ξ.

1.9 The secant method is used to determine solutions of the equation
x2 − 1 = 0. Starting from x0 = 1 + ε, x1 = −1 + ε, show that
x2 = 1

2ε+O(ε2), and determine x3, x4 and x5, neglecting terms
of order O(ε2). Explain why, at least for sufficiently small values
of ε, the sequence (xk) converges to the solution −1.

Repeat the calculation with x0 and x1 interchanged, so that
x0 = −1 + ε and x1 = 1 + ε, and show that the sequence now
converges to the solution 1.

1.10 Write the secant iteration in the form

xk+1 =
xk f(xk−1) − xk−1 f(xk)

f(xk−1) − f(xk)
, k = 1, 2, 3, . . . .

Supposing that f has a continuous second derivative in a neigh-
bourhood of the solution ξ of f(x) = 0, and that f ′(ξ) > 0 and
f ′′(ξ) > 0, define

ϕ(xk, xk−1) =
xk+1 − ξ

(xk − ξ)(xk−1 − ξ)
,

where xk+1 has been expressed in terms of xk and xk−1. Find
an expression for

ψ(xk−1) = lim
xk→ξ

ϕ(xk, xk−1) ,

and then determine limxk−1→ξ ψ(xk−1). Deduce that

lim
xk,xk−1→ξ

ϕ(xk, xk−1) = f ′′(ξ)/2f ′(ξ) .

Now assume that

lim
k→∞

|xk+1 − ξ|
|xk − ξ|q = A .

Show that q − 1 − 1/q = 0, and hence that q = 1
2 (1 +

√
5).
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Deduce finally that

lim
k→∞

|xk+1 − ξ|
|xk − ξ|q =

(
f ′′(ξ)
2f ′(ξ)

)q/(1+q)

.

1.11 A variant of the secant method defines two sequences uk and
vk such that all the values f(uk), k = 0, 1, 2, . . . , have one sign,
and all the values f(vk), k = 0, 1, 2, . . ., have the opposite sign.
From the numbers uk and vk the secant formula is used to define

wk =
ukf(vk) − vkf(uk)

f(vk) − f(uk)
, k = 0, 1, 2, . . . ;

we define uk+1 = wk, vk+1 = vk if f(wk) has the same sign as
f(uk), and otherwise uk+1 = uk, vk+1 = wk. Suppose that f ′′

is defined and continuous on the interval [u0, v0], and that, for
some K, f ′′ has constant sign in [uK , vK ]. Explain, graphically
or otherwise, why either uk = uK for all k ≥ K, or vk = vK
for all k ≥ K. Deduce that the method converges linearly, and
determine the asymptotic rate of convergence; explain clearly
what you mean by convergence of this method. What advan-
tages, if any, do you think this method has compared with the
secant method of Definition 1.8?

1.12 A two-cycle of the iteration defined by the function g is a pair
of distinct numbers a, b such that b = g(a) and a = g(b). Use
the fact that a and b are fixed points of the iteration defined by
the function h(x) = g(g(x)) to give a definition of stability for
a two-cycle. Show that if |g′(a) g′(b)| < 1, then the two-cycle is
stable, and that if |g′(a) g′(b)| > 1 the two-cycle is not stable.

Show that if a, b is a two-cycle for Newton’s method for the
function f , and if |f(a)f(b)f ′′(a)f ′′(b)| < [f ′(a)f ′(b)]2, then the
two-cycle is stable.

Show that Newton’s method for the solution of f(x) = 0 with

f : x �→ x(x2 − 1)

has a two-cycle of the form a,−a, and find the value of a; is this
two-cycle stable?
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Solution of systems of linear equations

2.1 Introduction

In Chapter 1 we considered the solution of a single equation of the form
f(x) = 0 where f is a real-valued function defined and continuous on
a closed interval of the real line. The simplest example of this kind is
the linear equation ax = b where a and b are given real numbers, with
a �= 0, whose solution is

x = a−1b , (2.1)

trivially. Of course, we could have expressed the solution as x = b/a as
in Chapter 1, but, as you will see in a moment, writing x = a−1b is much
more revealing in the present context. In this chapter we shall consider
a different generalisation of this elementary problem:

Let A be an n × n matrix with aij as its entry in row i and column j

and b a given column vector of size n with jth entry bj ;

find a column vector x of size n such that Ax = b.

Denoting by xi the ith entry of the vector x, we can also write Ax = b

in the following expanded form:

a11x1 + a12x2 + · · · + a1nxn = b1 ,

a21x1 + a22x2 + · · · + a2nxn = b2 ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

an1x1 + an2x2 +· · ·+ annxn = bn .


 (2.2)

Recall that in order to ensure that for real numbers a and b the single
linear equation ax = b has a unique solution, we need to assume that
a �= 0. In the case of the simultaneous system (2.2) of n linear equations
in n unknowns we shall have to make an analogous assumption on the
matrix A.

To do so, we introduce the following definition.

39



40 2 Solution of systems of linear equations

Definition 2.1 The set of all m×n matrices with real entries is denoted
by R

m×n. A matrix of size n× n will be called a square matrix of order
n, or simply a matrix of order n. The determinant of a square matrix
A ∈ R

n×n is the real number det(A) defined as follows:

det(A) =
∑
perm

sign(ν1, ν2, . . . , νn)a1ν1a2ν2 . . . anνn .

The summation is over all n! permutations (ν1, ν2, . . . , νn) of the integers
1, 2, . . . , n, and sign(ν1, ν2, . . . , νn) = +1 or −1 depending on whether the
n-tuple (ν1, ν2, . . . , νn) is an even or odd permutation of (1, 2, . . . , n),
respectively. An even (odd) permutation is obtained by an even (odd)
number of exchanges of two adjacent elements in the array (1, 2, . . . , n).
A matrix A ∈ R

n×n is said to be nonsingular when its determinant
det(A) is nonzero.

The inverse matrix A−1 of a nonsingular matrix A ∈ R
n×n is defined

as the element of R
n×n such that A−1A = AA−1 = I, where I is the

n × n identity matrix

I =




1 0 . . . 0
0 1 . . . 0
. . . . . . . . . . . .

0 0 . . . 1


 . (2.3)

In order to find an explicit expression for A−1 in terms of the elements of
the matrix A, we recall from linear algebra that, for each i = 1, 2, . . . , n,

ai1Ak1 + ai2Ak2 + · · · + ainAkn =
{

det(A) if i = k ,

0 if i �= k ,
(2.4)

where Aij = (−1)i+jCof(aij) and Cof(aij), called the cofactor of aij ,
is the determinant of the (n − 1) × (n − 1) matrix obtained by erasing
from A ∈ R

n×n row i and column j. Then, it is a trivial matter to show
using (2.4) that A−1 has the form

A−1 =
1

det(A)




A11 A21 . . . An1

A12 A22 . . . An2

. . . . . . . . . . . .

A1n A2n . . . Ann


 . (2.5)

Having found an explicit formula for the matrix A−1, we now multiply
both sides of the equation Ax = b on the left by A−1 to deduce that
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A−1(Ax) = A−1b; finally, since A−1(Ax) = (A−1A)x = Ix = x, it
follows that

x = A−1b , (2.6)

where the inverse A−1 of the nonsingular matrix A is given in terms of
the entries of A by (2.5).1

An alternative approach to the solution of the linear system Ax = b,
called Cramer’s rule, proceeds by expressing the ith entry of x as

xi = Di/D , i = 1, 2, . . . , n ,

where D = det(A), and Di is the n×n determinant obtained by replacing
the ith column of D by the entries of b. Evidently, we must require that
A is nonsingular, i.e., that D = det(A) �= 0. Thus, all we need to do
to solve Ax = b is to evaluate the n + 1 determinants D,D1, . . . , Dn,
each of them n × n, and check that D = det(A) is nonzero; the final
calculation of the elements xi, i = 1, 2, . . . , n, is then trivial.2

The purpose of our next example is to illustrate the application of
Cramer’s rule.

Example 2.1 Suppose that we wish to solve the system of linear equa-
tions

x1 + x2 + x3 = 6 ,

2x1 + 4x2 + 2x3 = 16 ,

−x1 + 5x2 − 4x3 = −3 .

The solution of such a small system can easily be found in terms of
determinants, by Cramer’s rule. This gives

x1 = D1/D , x2 = D2/D , x3 = D3/D ,

1 By the way, on comparing (2.6) with (2.1) you will notice that (2.1) is a special
case of (2.6) when n = 1.

2 Gabriel Cramer (31 July 1704, Geneva, Switzerland – 4 January 1752, Bagnols-
sur-Cèze, France). In the 1730s Colin Maclaurin (February 1698, Kilmodan,
Cowal, Argyllshire, Scotland – 14 June 1746, Edinburgh, Scotland) wrote his Trea-
tise of Algebra which was not published until 1748, two years after his death. It
contained the first published results on determinants proving Cramer’s rule for
2 × 2 and 3 × 3 systems and indicating how the 4 × 4 case would work. Cramer
gave the general rule for n×n systems without proof in the Appendix to his paper
‘Introduction to the analysis of algebraic curves’ (1750), motivated by the desire
to find the equation of a plane curve passing through a number of given points.
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where

D =

∣∣∣∣∣∣
1 1 1
2 4 2

−1 5 −4

∣∣∣∣∣∣ , D1 =

∣∣∣∣∣∣
6 1 1

16 4 2
−3 5 −4

∣∣∣∣∣∣ ,
with similar expressions for D2 and D3. To obtain the solution we
therefore need to evaluate four determinants. �

Now you may think that since, for A ∈ R
n×n nonsingular, we have

expressed the solution to Ax = b in the ‘closed form’

x = A−1b

and have even found a formula for A−1 in terms of the coefficients of A,
or may simply compute the entries of x directly using Cramer’s rule, the
story about the simultaneous set of linear equations (2.2) has reached
its happy ending. We are sorry to disappoint you: a disturbing tale is
about to unfold.

Imagine the following example: let n = 100, say, and suppose that you
have been given all 10000 entries of a 100× 100 matrix A, together with
the entries of a 100-component column vector b. To avoid trivialities,
let us suppose that none of the entries of A or b is equal to 0. Question:
Does the linear system Ax = b have a solution? If it does, how would
you find, say, the 53rd entry of the solution vector x? Of course, you
could calculate the determinant of A and check whether it is equal to
zero; if not, you could then calculate the determinant D53 obtained by
replacing the 53rd column of A by the vector b, and the required result,
by Cramer’s rule, is then the ratio of these two determinants. How much
time do you think you would need to accomplish this task? An hour?
A day? A month?

I imagine that you do not have a large enough sheet of paper in front
of you to write down this 100 × 100 matrix. Let us therefore start with
a somewhat simpler setting. Assume that n is any integer, n ≥ 2, and
denote by dn the number of arithmetic operations that are required to
calculate det(A) for A ∈ R

n×n. For example, for a 2 × 2 matrix,

det(A) = a11a22 − a12a21 ;

this evaluation requires 3 arithmetic operations – 2 multiplications and
1 subtraction – giving d2 = 3. In general, we can calculate det(A) by
expanding it in the elements of its first row. This requires multiplying
each of the n elements in the first row of A by a subdeterminant of size
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n − 1 (a total of n(dn−1 + 1) operations) and summing the n resulting
numbers (another n − 1 operations). Thus,

dn = n(dn−1 + 1) + n − 1 , n ≥ 3 , d2 = 3 . (2.7)

Let us write dn = cnn! and substitute this into (2.7) to obtain

cn = cn−1 + 2
1

(n − 1)!
− 1

n!
, n ≥ 3 , c2 =

3
2
. (2.8)

Now, summing (2.8) from n = 3 to k for k ≥ 3 yields, on letting 0! = 1,

ck =
k−1∑
n=0

1
n!

− 1
k!

.

As
∑∞
n=0(1/n!) = e, it follows that

lim
k→∞

ck = e .

Thus,1 dn ∼ en! as n → ∞. In order to compute the solution of a
system of n simultaneous linear equations by Cramer’s rule we need to
evaluate n + 1 determinants, each of size n × n, so the total number of
operations required is about (n + 1)dn ∼ e (n + 1)! as n → ∞.

For n = 100, this means approximately 101! e ≈ 2.56×10160 arithmetic
operations.2 Today’s fastest parallel computers are capable of teraflop
speeds, i.e., 1012 floating point operations per second; therefore, the
computing time for our solution would be around 2.56 × 10160/1012 =
2.56 × 10148 seconds, or a staggering 8.11 × 10140 years. According
to the prevailing theoretical position, the Universe began in a violent
explosion, the Big Bang, about 12.5(±3) × 109 years ago. So please put
that large sheet of paper away quickly! We need to discover a more
efficient approach.

Incidentally, you might notice that in the expansion of all the deter-
minants involved in Cramer’s rule all the smaller subdeterminants occur
many times over, so the number of operations involved can be reduced
by avoiding such repetitions. However, a more careful analysis shows
1 For two sequences (an) and (bn), we shall write an ∼ bn if limn→∞(an/bn) = 1.
2 While on the subject of calculating factorials of large integers, let us mention
Stirling’s formula which states that n! ∼ √

2πnn+1/2e−n as n→ ∞ (J. Stirling,
Methodus differentialis, 1730). Stirling’s approximation can be made more precise
as the double inequality

√
2πnn+1/2e−n+1/(12n+1) < n! <

√
2πnn+1/2e−n+1/(12n)

(H. Robbins, A remark on Stirling’s formula Amer. Math. Monthly 62, 26–29,
1955).
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that we cannot by this means reduce the total by more than a factor of
about n, which hardly affects our conclusion.

Our other approach to solving Ax = b, based on computing A−1 from
(2.5) and writing x = A−1b, is equally inefficient: in order to compute
the inverse of an n×n matrix A using determinants, one has to calculate
the determinant of A as well as n2 determinants of size n−1 each of which
then has to be divided by det(A), requiring a total of approximately

en! + n2e (n − 1)! + n2 ∼ e (n + 1)!

arithmetic operations, just the same as before.
The aim of this chapter is to develop alternative methods for the solu-

tion of the system of linear equations Ax = b. We begin by considering
a classical technique, Gaussian elimination.1 We shall then explore its
relationship to the factorisation A = LU of the matrix A where L is
lower triangular and U is upper triangular. It will be seen that by using
the Gaussian elimination the number of arithmetic operations required
to solve the linear system Ax = b with an n × n matrix A is approx-
imately 2

3n
3 – a dramatic reduction from the O(e (n + 1)!) operation

count associated with matrix inversion using determinants.2

We conclude the chapter with a discussion of another classical idea
attributed to Gauss:3 the least squares method for the solution of the
system of linear equations Ax = b where A ∈ R

m×n, x is the column
vector of unknowns of size n and b a given column vector of size m.

2.2 Gaussian elimination

The technique for solving systems of linear algebraic equations that we
shall describe in this section was developed by Carl Friedrich Gauss and
was first published in his Theoria motus corporum coelestium in section-
ibus conicis solem ambientium (1809), a major two-volume treatise on
the motion of celestial bodies. Gauss was concerned with the study of
1 Carl Friedrich Gauss (30 April 1777, Brunswick, Duchy of Brunswick, Holy Roman
Empire (now Germany) – 23 February 1855, Göttingen, Hanover, Germany) made
outstanding contributions to mathematics, physics and astronomy. He gave the
first proof, in 1799, of the Fundamental Theorem of Algebra. Gauss worked in
differential geometry, number theory, algebra and non-Euclidean geometry.

2 Note, for example, that 2
3
1003 ≈ 0.67 × 106 � 101! e ≈ 2.56 × 10160. On a

computer that performs 1012 floating operations a second a calculation requiring
106 operations via Gaussian elimination would take 10−6 seconds, as opposed to
the 8.11× 10140 years using Cramer’s rule or formula (2.5).

3 See, however, the bibliographical notes at the end of the chapter about the priority
dispute between Legendre and Gauss.
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the asteroid Pallas, and derived a set of six linear equations with six
unknowns, also giving a systematic method for its solution.

The method proceeds by successively eliminating the elements below
the diagonal of the matrix of the linear system until the matrix becomes
triangular, when the solution of the system is very easy. This technique
is now known under the name Gaussian elimination.1

Before we embark on the general description of Gaussian elimination,
let us illustrate its basic steps through a simple example; this is the same
as Example 2.1 above, written out again for convenience.

Example 2.2 Consider the system of linear equations

x1 + x2 + x3 = 6 ,

2x1 + 4x2 + 2x3 = 16 ,

−x1 + 5x2 − 4x3 = −3 .

It is convenient to rewrite this in the form Ax = b where A ∈ R
3×3 and

x and b are column vectors of size 3; thus,
 1 1 1

2 4 2
−1 5 −4




 x1

x2

x3


 =


 6

16
−3


 . (2.9)

We begin by adding the first row, multiplied by −2, to the second row,
and adding the first row to the third row, giving the new system

 1 1 1
0 2 0
0 6 −3




 x1

x2

x3


 =


 6

4
3


 . (2.10)

The newly created 0 entries in the first column have been typeset in
italics. Now adding the new second row, multiplied by −3, to the third
row, we find 

 1 1 1
0 2 0
0 0 −3




 x1

x2

x3


 =


 6

4
−9


 , (2.11)

1 The idea of this elimination process was already known to the Chinese two thou-
sand years ago. The book Jiu zhang suan shu (English translation, by K. Shen
et al.: The Nine Chapters on the Mathematical Art, Oxford University Press,
1999) contained an example of the elimination for a system of five equations with
five unknowns. This book was very influential in the history of Chinese mathe-
matics, and is the earliest specialised mathematical work in China that survived
to the present day. Although it is unclear when its mathematical content was
produced, it is estimated that the book was assembled during the Han dynasty in
the first century AD.
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which can easily be solved for the unknowns in the reverse order, begin-
ning with x3 = 3. �
Each of these successive row operations can be expressed as a multipli-
cation on the left of the matrix A ∈ R

n×n, n ≥ 2 (in our example n = 3),
of the system of linear equations by a transformation matrix. Writing
E(rs) for the n × n matrix whose only nonzero element is ers = 1, we
see that the product

(I + µrsE
(rs))A (2.12)

is the same as the original matrix A, except that the elements of row s,
multiplied by a real number µrs, have been added to the corresponding
elements of row r. Here I denotes the n × n identity matrix defined by
(2.3). In the elimination process we always add a multiple of an earlier
row to a later row in the matrix, so that 1 ≤ s < r ≤ n in (2.12); the
transformation matrix I + µrsE

(rs) is therefore lower triangular in the
following sense.

Definition 2.2 Let n be an integer, n ≥ 2. The matrix L ∈ R
n×n is said

to be lower triangular if lij = 0 for every i and j with 1 ≤ i < j ≤ n.
The matrix L ∈ R

n×n is called unit lower triangular if it is lower
triangular, and also the diagonal elements are all equal to unity, that is
lii = 1 for i = 1, 2, . . . , n.

Thus the matrix I+µrsE
(rs) ∈ R

n×n appearing in (2.12) is unit lower
triangular if 1 ≤ s < r ≤ n, and the above elimination process can be
expressed by multiplying A on the left successively by the unit lower
triangular matrices I+µrsE

(rs) for r = s+1, . . . , n and s = 1, . . . , n−1,
with µrs ∈ R; there are 1

2n(n−1) of these matrices, one for each element
of A below the diagonal (since there are n elements on the diagonal and,
therefore, 1 + · · · + (n − 1) = 1

2 (n2 − n) elements below the diagonal).
The next theorem lists the technical tools which are required for proving
that the resulting product is a lower triangular matrix.

Theorem 2.1 The following statements hold for any integer n ≥ 2:

(i) the product of two lower triangular matrices of order n is lower
triangular of order n;

(ii) the product of two unit lower triangular matrices of order n is
unit lower triangular of order n;

(iii) a lower triangular matrix is nonsingular if, and only if, all the
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diagonal elements are nonzero; in particular, a unit lower trian-
gular matrix is nonsingular;

(iv) the inverse of a nonsingular lower triangular matrix of order n

is lower triangular of order n;
(v) the inverse of a unit lower triangular matrix of order n is unit

lower triangular of order n.

Proof The proofs of parts (i), (ii), (iii) and (v) are very straightforward,
and are left as an exercise.

Part (iv) is proved by induction; it is easily verified for a nonsingular
lower triangular matrix of order 2, using (2.5). Let n > 2, suppose that
(iv) is true for all nonsingular lower triangular matrices of order k, with
2 ≤ k < n, and let L be a nonsingular lower triangular matrix of order
k + 1. Both L and its inverse L−1 can be partitioned by their last row
and column:

L =
(

L1 0
rT α

)
, L−1 =

(
X y

zT β

)
,

where L1 is a nonsingular lower triangular matrix of order k and X ∈
R
k×k; α and β are real numbers and r, z and y are column vectors of

size k. Since the product LL−1 is the identity matrix of order k + 1, we
have

L1X = Ik , L1y = 0 , rTX + αzT = 0T , rTy + αβ = 1 ;

here Ik signifies the identity matrix of order k. Thus X = L−1
1 , which

is lower triangular of order k by the inductive hypothesis, and y = 0
given that L1 is nonsingular; the remaining two equations determine z

and β on noting that α �= 0 (given that L is nonsingular). This shows
that L−1 is lower triangular of order k + 1, and the inductive step is
complete; consequently, (iv) is true for any n ≥ 2.

We shall also require the concept of upper triangular matrix.

Definition 2.3 Let n be an integer, n ≥ 2. The matrix U ∈ R
n×n is said

to be upper triangular if uij = 0 for every i and j with 1 ≤ j < i ≤ n.

We note that results analogous to those in the preceding theorem
concerning lower triangular matrices are also valid for upper triangular
matrices (replacing the words ‘lower triangular’ by ‘upper triangular’
throughout).
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L

U

Fig. 2.1. LU factorisation of A ∈ R
n×n: A = LU . The matrix L ∈ R

n×n is
unit lower triangular and U ∈ R

n×n is upper triangular.

The elimination process for A ∈ R
n×n may now be written as follows:

L(N)L(N−1) . . . L(1)A = U , N = 1
2n(n − 1) , (2.13)

where U ∈ R
n×n is an upper triangular matrix and each of the matrices

L(j) ∈ R
n×n, j = 1, . . . , N , is unit lower triangular of order n and has

the form I +µrsE
(rs) with 1 ≤ s < r ≤ n, where I is the identity matrix

of order n. That is,

L(1) = I+µ21E
(21), L(2) = I+µ31E

(31), . . . , L(N) = I+µnn−1E
(nn−1).

It is easy to see that E(rs)E(rs) = δrsE
(rs), where

δrs =
{

1 for r = s ,

0 for r �= s

is known as theKronecker delta.1 Thus, for 1 ≤ s < r ≤ n, the inverse
of the matrix I + µrsE

(rs) is the lower triangular matrix I − µrsE
(rs),

which corresponds to the subtraction of row s, multiplied by µrs, from
row r. Hence

A = L−1
(1) . . . L

−1
(N)U = LU , (2.14)

where L, as the product of a finite number of unit lower triangular
matrices of order n, is itself unit lower triangular of order n by Theorem
2.1(ii); see Figure 2.1.

2.3 LU factorisation

Having seen that the Gaussian elimination process gives rise to the fac-
torisation A = LU of the matrix A ∈ R

n×n, n ≥ 2, where L is unit
1 Leopold Kronecker (7 December 1823, Liegnitz, Prussia, Germany (now Legnica,
Poland) – 29 December 1891, Berlin, Germany) made significant contributions to
the theory of elliptic functions, the theory of ideals and the algebra of quadratic
forms.
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lower triangular and U is upper triangular, we shall now show how to
calculate the elements of L and U directly. Equating the elements of A
and LU we conclude that

aij =
n∑
k=1

likukj , 1 ≤ i, j ≤ n . (2.15)

Recalling that L and U are lower and upper triangular respectively, we
see that, in fact, the range of k in this sum extends only up to min{i, j},
the smaller of the numbers i and j. Taking the two cases separately
gives

aij =
j∑
k=1

likukj , 1 ≤ j < i ≤ n , (2.16)

aij =
i∑
k=1

likukj , 1 ≤ i ≤ j ≤ n . (2.17)

Rearranging these equations, and using the fact that lii = 1 for all
i = 1, 2, . . . , n, we find that

lij =
1
ujj

{
aij −

j−1∑
k=1

likukj

}
, i = 2, . . . , n ,

j = 1, . . . , i − 1 , (2.18)

uij = aij −
i−1∑
k=1

likukj , i = 1, . . . , n ,

j = i, . . . , n , (2.19)

with the convention that sums over empty index sets are equal to zero.
Thus, the elements of U in the first row are u1j = a1j , j = 1, 2, . . . , n,
and the elements of L in the first column are l11 = 1 and li1 = ai1/u11,
i = 2, . . . , n.

The equations (2.18) and (2.19) can now be used for the calculation
of the elements lij and uij . For each value of i, starting with i = 2, we
calculate first lij , for j = 1, . . . , i − 1 in order, and then the values of
uij , for j = i, . . . , n, again in increasing order. We then move on to the
same calculation for i + 1, and so on until i = n. In the calculation of
lij we need the values of ukj , 1 ≤ k ≤ j < i − 1, from previous rows,
and we also need the values of lik, 1 ≤ k ≤ j − 1, in the same row but in
previous columns; a similar argument applies to the calculation of uij .
When carried out in this order, all the values required at each step have
already been calculated.

Of course, we must ensure that the calculation does not fail because
of division by zero; this requires that none of the ujj , j = 1, . . . , n − 1,
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in the formula (2.18) is zero. To investigate this possibility we use the
properties of certain submatrices of A.

Definition 2.4 Suppose that A ∈ R
n×n with n ≥ 2, and let 1 ≤ k ≤ n.

The leading principal submatrix of order k of A is defined as the
matrix A(k) ∈ R

k×k whose element in row i and column j is equal to the
element of the matrix A in row i and column j for 1 ≤ i, j ≤ k.

Armed with this definition, we can now formulate the main result
of this section. It provides a sufficient condition for ensuring that the
algorithm (2.18), (2.19) for calculating the entries of the matrices L and
U in the LU factorisation A = LU of a matrix A ∈ R

n×n does not break
down due to division by zero in (2.18).

Theorem 2.2 Let n ≥ 2, and suppose that A ∈ R
n×n is such that

every leading principal submatrix A(k) ∈ R
k×k of A of order k, with

1 ≤ k < n, is nonsingular. (Note that A itself is not required to be
nonsingular.) Then, A can be factorised in the form A = LU , where
L ∈ R

n×n is unit lower triangular and U ∈ R
n×n is upper triangular.

Proof The proof is by induction on the order n. Let us begin by verifying
the statement of the theorem for n = 2. We intend to show that any
2 × 2 matrix

A =
(

a b

c d

)
,

with a �= 0, is equal to the product of a unit lower triangular matrix L

of order 2 and an upper triangular matrix U of order 2; that is, we wish
to establish the existence of

L =
(

1 0
m 1

)
, U =

(
u v

0 η

)
,

such that LU = A, where m, u, v and η are four real numbers, to be
determined. Equating the product LU with A, we deduce that

u = a , v = b , mu = c , mv + η = d .

Since a �= 0 by hypothesis, the first of these equalities implies that u �= 0
also; hence m = c/u, v = b, and η = d − mv. Thus we have shown the
existence of the required matrices L and U in R

2×2 and completed the
proof for n = 2.
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Now, suppose that the statement of the theorem has already been ver-
ified for matrices of order k, 2 ≤ k < n; suppose that A ∈ R

(k+1)×(k+1)

and all leading principal submatrices of A of order k and less are non-
singular. We mimic the proof in the case of n = 2 by partitioning A into
blocks by the last row and column:

A =
(

A(k) b

cT d

)
,

where A(k) ∈ R
k×k is a nonsingular matrix (all of whose leading princi-

pal submatrices are themselves nonsingular), b, c are column vectors of
size k, and d is a real number. According to our inductive hypothesis,
there exist a unit lower triangular matrix L(k) of order k and an upper
triangular matrix U (k) of order k such that A(k) = L(k)U (k). Thus we
shall seek the desired unit lower triangular matrix L of order k + 1 and
the upper triangular matrix U of order k + 1 in the form

L =
(

L(k) 0
mT 1

)
and U =

(
U (k) v

0T η

)

where m and v are column vectors of size k and η is a real number, to
be determined from the requirement that the product LU be equal to
the matrix A. On equating LU with A, we obtain

L(k)U (k) = A(k) , L(k)v = b , mTU (k) = cT , mTv + η = d .

The first of these four equalities provides no new information. However,
we can use the remaining three to determine the column vectors v and
m and the real number η. Since L(k) is unit lower triangular, its de-
terminant is equal to 1; therefore L(k) is nonsingular. This means that
the second equation uniquely determines the unknown column vector v.
Further, since by hypothesis A(k) is nonsingular and A(k) = L(k)U (k),
we conclude that

det(A(k)) = det(L(k)U (k)) = det(L(k)) det(U (k)) = det(U (k)) ;

given that det(A(k)) �= 0 by the inductive hypothesis, this implies that
det(U (k)) �= 0 also, and therefore the third equation uniquely determines
m. Having found v and m, the fourth equation yields η = d − mTv.
Thus we have shown the existence of the desired matrices L and U of
order k + 1, and the inductive step is complete.1

1 In the last paragraph we made use of the Binet–Cauchy Theorem which states
that for three matrices A, B, C in Rk×k with A = BC, we have det(A) =
det(B) det(C). This result was proved in 1812 independently by Augustin-Louis
Cauchy (1789–1857) and Jacques Philippe Marie Binet (1786–1856).
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2.4 Pivoting

The aim of this section is to show that even if the matrix A does not
satisfy the conditions of Theorem 2.2, by permuting rows and columns
it can be transformed into a new matrix Ã of the same size so that Ã

admits an LU factorisation.

Example 2.3 Consider, for example, the system obtained from (2.9)
by replacing the coefficient of x1 in the first equation by zero. Then,
the leading element in the matrix A is zero, the computation fails at the
first step, and the LU factorisation of A does not exist. However if we
interchange the first two equations we obtain a new matrix Ã which is
the same as A but with the first two rows interchanged,

Ã =


 2 4 2

0 1 1
−1 5 −4


 . (2.20)

Since the leading principal submatrices of order 1 and 2 of Ã are non-
singular, by Theorem 2.2 the matrix Ã now has the required LU factori-
sation, which is easily computed.

A computation which fails when an element is exactly zero is also likely
to run into difficulties when that element is nonzero but of very small
absolute value; the problem stems from the presence of rounding errors.
The basic operation in the elimination process consists of multiplying
the elements of one row of the matrix by a scalar µrs, and adding to
the elements of another row. The multiplication operation will always
introduce a rounding error, so the elements which are multiplied by µrs
will already contain a rounding error from operations with earlier rows
of the matrix; these errors will therefore themselves be multiplied by µrs
before adding to the new row. The errors will be magnified if |µrs| > 1,
and will be greatly magnified if |µrs| � 1.

The accumulation of rounding errors alluded to in the previous para-
graph can be alleviated by permuting the rows of the matrix. Thus,
at each stage of the elimination process we interchange two rows, if ne-
cessary, so that the largest element in the current column lies on the
diagonal. This process is known as pivoting. Clearly, when pivoting is
performed none of the multipliers µrs have absolute value greater than
unity. The process is easily formalised by introducing permutation ma-
trices. This leads us to our next definition.
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Definition 2.5 Suppose that n ≥ 2. A matrix P ∈ R
n×n in which

every element is either 0 or 1, and whose every row and every column
contain exactly one nonzero element, is called a permutation matrix.

Example 2.4 Here are three of the possible 3! permutation matrices in
R

3×3: 
 1 0 0

0 1 0
0 0 1


 ,


 0 1 0

1 0 0
0 0 1


 ,


 0 0 1

1 0 0
0 1 0


 .

The proof of our next result is elementary and is left to the reader.

Lemma 2.1 Let n ≥ 2 and suppose that P ∈ R
n×n is a permutation

matrix. Then, the following statements hold:

(i) given that I is the identity matrix of order n, the matrix P can
be obtained from I by permuting rows;

(ii) if Q ∈ R
n×n is another permutation matrix, then the products

PQ and QP are also permutation matrices;
(iii) let P (rs) ∈ R

n×n denote the interchange matrix, obtained from
the identity matrix I ∈ R

n×n by interchanging rows r and s;
any interchange matrix is a permutation matrix; moreover, any
permutation matrix of order n can be written as a product of
interchange matrices of order n;

(iv) the determinant of a permutation matrix P ∈ R
n×n is equal to 1

or −1, depending on whether P is obtained from the identity ma-
trix of order n by an even or odd number of permutations of rows,
respectively; in particular, a permutation matrix is nonsingular.

Now we are ready to prove the next theorem.

Theorem 2.3 Let n ≥ 2 and A ∈ R
n×n. There exist a permutation

matrix P , a unit lower triangular matrix L, and an upper triangular
matrix U , all three in R

n×n, such that

PA = LU . (2.21)

Proof The proof is by induction on the order n. Let n = 2 and consider
the matrix

A =
(

a b

c d

)
.
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If a �= 0, the proof follows from Theorem 2.2 with P taken as the 2 × 2
identity matrix. If a = 0 but c �= 0, we take

P =
(

0 1
1 0

)

and write

PA =
(

c d

0 b

)
=
(

1 0
0 1

)(
c d

0 b

)
≡ LU .

If a = 0 and c = 0, the result trivially follows by writing(
0 b

0 d

)
=
(

1 0
0 1

)(
0 b

0 d

)
≡ LU

and taking P as the 2× 2 identity matrix. That completes the proof for
n = 2.

Now, suppose that A ∈ R
(k+1)×(k+1) and assume that the theorem

holds for every matrix of order k with 2 ≤ k < n. We begin by locating
the element in the first column of A which has the largest absolute value,
or any one of them if there is more than one such element, and inter-
change rows if required; if the largest element is in row r we interchange
rows 1 and r. We then partition the new matrix according to the first
row and column, writing

P (1r)A =
(

α wT

p B

)
=
(

1 0T

m I

)(
α vT

0 C

)
(2.22)

where α is the element of largest absolute value in the first column,
B,C ∈ R

k×k, and p, w, m and v are column vectors of size k, with m,
v and C to be determined. Writing out the product we find that

vT = wT ,

αm = p ,

C = B −mvT .


 (2.23)

If α = 0, then the first column of A consists entirely of zeros (p = 0); in
this case we can evidently choose m = 0, v = w and C = B. Suppose
now that α �= 0; then m = (1/α)p, so that all the elements of m

have absolute value less than or equal to unity, since α is the largest in
absolute value element in the first column. By the inductive hypothesis
we can now write

P ∗C = L∗U∗ , (2.24)
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where P ∗, L∗, U∗ ∈ R
k×k, P ∗ is a permutation matrix, L∗ is unit lower

triangular, and U∗ is upper triangular. Hence, by (2.23),

P (1r)A =
(

1 0T

0 P ∗

)(
1 0T

P ∗m L∗

)(
α vT

0 U∗

)
(2.25)

since P ∗P ∗ = I. Now, defining the permutation matrix P by

P =
(

1 0T

0 P ∗

)
P (1r) , (2.26)

we obtain

PA =
(

1 0T

P ∗m L∗

)(
α vT

0 U∗

)
, (2.27)

which is the required factorisation of A ∈ R
(k+1)×(k+1). This completes

the inductive step. The theorem therefore holds for every matrix of
order n ≥ 2.

The proof of this theorem also contains an algorithm for constructing
the permutation matrix P , and the matrices L and U . The permu-
tation matrix is conveniently described by specifying the sequence of
interchanges: given the n − 1 integers p1, p2, . . . , pn−1, the matrix P is
the product of the permutation matrices which interchange rows 1 and
p1, 2 and p2, and so on.

2.5 Solution of systems of equations

Consider the linear system Ax = b where A ∈ R
n×n and x and b

are column vectors of size n. According to Theorem 2.3 there exist a
permutation matrix P ∈ R

n×n, a unit lower triangular matrix L ∈ R
n×n

and an upper triangular matrix U ∈ R
n×n such that PA = LU . Having

obtained the LU factorisation of the matrix PA, the solution of the
system of linear equations Ax = b is straightforward: multiplying both
sides of Ax = b on the left by the permutation matrix P , we obtain that

PAx = Pb ; (2.28)

equivalently, LUx = Pb. On defining y = Ux we can rewrite (2.28) as
the following coupled set of linear equations:

Ly = Pb , Ux = y . (2.29)

Assuming that the matrix P and the LU factorisation of PA are already
known, there are three stages to the calculation of x:
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Step 1.First we apply the sequence of permutations to the vector b,
to produce Pb;
Step 2.[Forward substitution] We then solve the lower triangular
system Ly = Pb, calculating the elements in the order y1, y2, . . . , yn;
Step 3.[Backsubstitution] Finally the required solution x is ob-
tained from the upper triangular system Ux = y, calculating the
elements of x in the reverse order, xn, xn−1, . . . , x1.

Step 3 will break down if any of the diagonal elements of U are zero,
but if this happens the matrix A is singular.

The next section is devoted to assessing the amount of computational
work for this algorithm.

2.6 Computational work

In this section we shall show that the work involved in factorising an
n× n matrix in the form A = LU is proportional to n3. An estimate of
the amount of computational work of this kind is important in deciding
in advance how long a calculation would take for a very large matrix, and
is also useful in comparing different methods for the solution of a given
problem. For example, in the next chapter we shall derive a method
for solving a system of equations with a symmetric positive definite
matrix; that method requires only half the amount of work involved
in the standard LU factorisation algorithm which takes no account of
symmetry.

Accurate estimates of the time taken by a computation are very com-
plicated and require some detailed knowledge of the computer being
used. The estimates which we shall give are simple but crude; they
are normally good enough for the types of comparisons we have just
mentioned.

We see from (2.18) that the calculation of lij requires j − 1 multipli-
cations, j − 2 additions, 1 subtraction and 1 division, a total of 2j − 1
operations. In the same way, (2.19) shows that the calculation of uij
requires 2i − 2 operations.1 Recalling that, for any integer k ≥ 2,

1 + · · · + k = 1
2k(k + 1) and 12 + · · · + k2 = 1

6k(k + 1)(2k + 1) ,

we then deduce that the total number of operations involved in the LU
1 We do not count the row interchanges in the number of ‘operations’.
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factorisation is
n∑
i=2

i−1∑
j=1

(2j − 1) +
n∑
i=1

n∑
j=i

2(i − 1) = 1
6n(n − 1)(4n + 1) .

It is enough to say that the number of multiplications required is about
2
3n

3 − 1
2n

2, for moderately large values of n.
Having constructed the factorisation we can now count the number

of operations required to compute the vectors y and x in (2.29). Given
the vector Pb, the elements of y are obtained from

y1 = (Pb)1 , yi = (Pb)i −
i−1∑
j=1

lijyj , i = 2, 3, . . . , n , (2.30)

which requires 2i − 2 operations. Summing over i this gives a total of
n(n − 1). The calculation of the elements of x is similar:

xi =
1
uii


yi −

n∑
j=i+1

uijxj


 , i = 1, 2, . . . , n . (2.31)

This requires 2(n − i) + 1 operations, giving a total of n2.
The total number of operations involved in the solution of the system

of equations is therefore approximately 2
3n

3 − 1
2n

2 for the factorisation,
followed by n(n−1)+n2 = 2n2 −n for the solution of the two triangular
systems, that is, approximately 2

3n
3 + 3

2n
2, ignoring terms of size O(n).

We often need to solve a number of systems of this kind, all with dif-
ferent right-hand sides, but with the same matrix. We then need only
factorise the matrix once, and the total number of multiplications re-
quired for k right-hand sides becomes approximately 2

3n
3 +

(
2k − 1

2

)
n2.

When k is fairly large it might appear that it would be more efficient to
form the inverse matrix A−1, and then multiply each right-hand side by
the inverse; but we shall show that it is not so.

To form the inverse matrix we first factorise the matrix A, and then
solve n systems, with the right-hand sides being the vectors which consti-
tute the columns of the identity matrix. Because these right-hand sides
have a special form, there is the possibility of saving some work; some
careful counting shows that the total can be reduced from 2

3n
3 + 2n3 =

8
3n

3 to an approximate total of 2n3 operations. It is easy to see that
the operation of multiplying a vector by the inverse matrix requires
n(2n− 1) operations; hence the whole computation of first constructing
the inverse matrix, and then multiplying each right-hand side by the in-
verse, requires a total of 2n3+2kn2 multiplications (ignoring terms of size
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O(n)). This is always greater than the previous value 2
3n

3+
(
2k − 1

2

)
n2,

whether k is small or large. The most efficient way of solving this prob-
lem is to construct and save the L and U factors of A, rather than to
form the inverse of A.

2.7 Norms and condition numbers

The analysis of the effects of rounding error on solutions of systems of
linear equations requires an appropriate measure. This is provided by
the concept of norm defined below. In order to motivate the axioms of
norm stated in Definition 2.6, we note that the set R of real numbers is
a linear space, and that the absolute value function

v ∈ R �→ |v| =
{

v if v ≥ 0,
−v if v < 0

has the following properties:

• |v| ≥ 0 for any v ∈ R, and |v| = 0 if, and only if, v = 0;
• |λv| = |λ| |v| for all λ ∈ R and all v ∈ R;
• |u + v| ≤ |u| + |v| for all u and v in R.

The absolute value |v| of a real number v measures the distance between
v and 0 (the zero element of the linear space R). Our next definition
aims to generalise this idea to an arbitrary linear space V over the field
R of real numbers: even though the discussion in the present chapter
is confined to finite-dimensional linear spaces of vectors (V = R

n) and
square matrices (V = R

n×n), norms over other linear spaces, including
infinite-dimensional function spaces, will appear elsewhere in the text
(see Chapters 8, 9, 11 and 14).

Definition 2.6 Suppose that V is a linear space over the field R of
real numbers. The nonnegative real-valued function ‖ · ‖ is said to be a
norm on the space V provided that it satisfies the following axioms:

� ‖v‖ = 0 if, and only if, v = 0 in V;
� ‖λv‖ = |λ| ‖v‖ for all λ ∈ R and all v in V;
� ‖u+v‖ ≤ ‖u‖+‖v‖ for all u and v in V (the triangle inequality).

A linear space V, equipped with a norm, is called a normed linear
space.

Remark 2.1 If V is a linear space over the field C of complex numbers,
then R in the second axiom of Definition 2.6 should be replaced by C,
with |λ| signifying the modulus of λ ∈ C.
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Any norm on the linear space V = R
n will be called a vector norm.

Three vector norms are in common use in numerical linear algebra: the
1-norm ‖ · ‖1, the 2-norm (or Euclidean norm) ‖ · ‖2, and the ∞-norm
‖ · ‖∞; these are defined below.

Definition 2.7 The 1-norm of the vector v = (v1, . . . , vn)T ∈ R
n is

defined by

‖v‖1 =
n∑
i=1

|vi| . (2.32)

Definition 2.8 The 2-norm of the vector v = (v1, . . . , vn)T ∈ R
n is

defined by ‖v‖2 =
(
vTv

)1/2. In other words,

‖v‖2 =

{
n∑
i=1

|vi|2
}1/2

. (2.33)

Definition 2.9 The ∞-norm of the vector v = (v1, . . . , vn)T ∈ R
n is

defined by

‖v‖∞ =
n

max
i=1

|vi| . (2.34)

When n = 1, each of these norms collapses to the absolute value, | · |,
the simplest example of a norm on V = R.

It is easy to show that ‖ · ‖1 and ‖ · ‖∞ obey all axioms of a norm.
For the 2-norm the first two axioms are still trivial to verify; to show
that the triangle inequality is satisfied by the 2-norm requires use of the
Cauchy1–Schwarz2 inequality.

Lemma 2.2 (Cauchy–Schwarz inequality)∣∣∣∣∣
n∑
i=1

uivi

∣∣∣∣∣ ≤ ‖u‖2‖v‖2 ∀u, v ∈ R
n . (2.35)

1 Augustin-Louis Cauchy (21 August 1789, Paris, France – 23 May 1857, Sceaux
(near Paris), France) made very significant contributions to algebra and number
theory. He was one of the founders of modern mathematical analysis, the theory
of complex functions, and the mathematics of elasticity theory.

2 Karl Herman Amandus Schwarz (25 January 1843, Hermsdorf, Silesia, Germany
(now in Poland) – 30 November 1921, Berlin, Germany) succeeded Karl
Weierstrass as Professor of Mathematics at Berlin in 1892. Outside mathematics
he acted as captain of the local Voluntary Fire Brigade, and helped the station-
master at the local railway station by closing the doors of the trains.
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Proof The proof of this inequality is rather simple: for any u and v in
R
n, and all λ ∈ R,

0 ≤ ‖λu + v‖2
2 =

n∑
i=1

(λui + vi)2

= λ2
n∑
i=1

|ui|2 + 2λ
n∑
i=1

uivi +
n∑
i=1

|vi|2 . (2.36)

Hence, the expression on the right is a nonnegative quadratic polyno-
mial in λ ∈ R, of the form Aλ2 + Bλ + C; therefore, the associated
discriminant,

B2 − 4AC =

(
2
n∑
i=1

uivi

)2

− 4

(
n∑
i=1

|ui|2
)(

n∑
i=1

|vi|2
)

,

is nonpositive. This implies (2.35) on recalling Definition 2.8.

The triangle inequality for the 2-norm is now deduced as follows: let-
ting λ = 1 in (2.36) and using (2.35), it follows that

‖u + v‖2
2 = ‖u‖2

2 + 2
n∑
i=1

uivi + ‖v‖2
2

≤ ‖u‖2
2 + 2‖u‖2‖v‖2 + ‖v‖2

2

= (‖u‖2 + ‖v‖2)
2
,

which yields the triangle inequality in the 2-norm on taking square roots.
Hence ‖ · ‖2 satisfies all three axioms of norm.

The 1-norm and the 2-norm on R
n are special cases of the p-norm,

defined on R
n, for p ≥ 1, by

‖v‖p =

{
n∑
i=1

|vi|p
}1/p

. (2.37)

The first two axioms of norm are trivial to verify for ‖ · ‖p; however,
showing the triangle inequality is less straightforward (except for p = 1,
and for p = 2, as we have already seen before); we shall now sketch the
proof of this for p > 1. The starting point is the following result, known
as Young’s inequality.1

1 William Henry Young (20 October 1863, London, England – 7 July 1942, Lau-
sanne, Switzerland) studied mathematics at Peterhouse, Cambridge. His most im-
portant contributions were to the calculus of functions of several variables. Young
was elected Fellow of the Royal Society in 1907; he was president of the London
Mathematical Society (1922–1924) and president of the International Union of
Mathematicians (1929–1936).
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Theorem 2.4 (Young’s inequality) Let p, q > 1, (1/p) + (1/q) = 1.
Then, for any two nonnegative real numbers a and b,

ab ≤ ap

p
+

bq

q
.

Proof If either a = 0 or b = 0 the inequality holds trivially. Let us
therefore suppose that a > 0 and b > 0. We recall that a function
x ∈ R �→ f(x) ∈ R is said to be convex if

f(θx + (1 − θ)y) ≤ θf(x) + (1 − θ)f(y)

for all θ ∈ [0, 1], and all x and y in R; i.e., for any x and y in R the
graph of the function f between the points (x, f(x)) and (y, f(y)) lies
below the chord that connects these two points. Note that the function
x �→ ex is convex. Therefore, with θ = 1/p and 1 − θ = 1/q, we get that

ab = eln a+ln b = e(1/p) ln ap+(1/q) ln bq ≤ 1
p

eln ap +
1
q

eln aq =
ap

p
+

bq

q
,

and the proof is complete. (When p = q = 2 the proof is trivial: as
(a − b)2 ≥ 0 also 2ab ≤ a2 + b2, and hence the required result.)

The next step is to establish Hölder’s inequality;1 it is a generalisation
of the Cauchy–Schwarz inequality.

Theorem 2.5 (Hölder’s inequality) Let p, q > 1, (1/p) + (1/q) = 1.
Then, for any u ∈ R

n and v ∈ R
n, we have∣∣∣∣∣

n∑
i=1

uivi

∣∣∣∣∣ ≤ ‖u‖p‖v‖q .

Proof If either u = 0 or v = 0 the inequality holds trivially. Let us
therefore suppose that u �= 0 and v �= 0, and consider the vectors ũ and
ṽ in R

n with components ũi = ui/‖u‖p and ṽi = vi/‖v‖q, respectively,
i = 1, 2, . . . , n. By Young’s inequality,∣∣∣∣∣

n∑
i=1

ũiṽi

∣∣∣∣∣ ≤
n∑
i=1

|ũiṽi| ≤
1
p

n∑
i=1

|ũi|p +
1
q

n∑
i=1

|ṽi|q =
1
p

+
1
q

= 1 .

Inserting the defining expressions for ũi and ṽi into the left-most expres-
sion in this chain, the result follows.
1 Otto Ludwig Hölder (22 December 1859, Stuttgart, Germany – 29 August 1937,
Leipzig, Germany) contributed to group theory; we owe him the concepts of factor
group, and inner and outer automorphisms. Hölder discovered the inequality now
named after him in 1884 while working on the convergence of Fourier series.
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The triangle inequality in the p-norm is referred to as Minkowski’s
inequality.1

Theorem 2.6 (Minkowski’s inequality) Let 1 ≤ p ≤ ∞ and u,v ∈
R
n. Then,

‖u + v‖p ≤ ‖u‖p + ‖v‖p .

Proof As we noted earlier, the proof of this inequality for p = 1 and
p = ∞ is easy. Let us therefore focus on the case 1 < p < ∞. In the
nontrivial case of u �= 0 and v �= 0, Hölder’s inequality yields

‖u + v‖pp =
n∑
i=1

|ui + vi|p ≤
n∑
i=1

|ui + vi|p−1 (|ui| + |vi|)

≤
(

n∑
i=1

|ui + vi|p
)p−1

p


( n∑

i=1

|ui|p
)1

p

+

(
n∑
i=1

|vi|p
)1

p




= ‖u + v‖p−1
p (‖u‖p + ‖v‖p) ,

and hence the desired result on dividing through by ‖u + v‖p−1
p .

Remark 2.2 For a nonzero element u in R
n, let ũ = (‖u‖∞)−1u.

Clearly, 1 ≤ ‖ũ‖p ≤ n1/p, and hence limp→∞ ‖ũ‖p = 1. Therefore,

‖u‖∞ = lim
p→∞ ‖u‖p , u ∈ R

n .

This identity justifies our use of the notation ‖ · ‖∞ for the maximum
norm, defined by ‖u‖∞ = maxni=1 |ui|, and our terminology: ∞-norm.

Remark 2.3 We note here that ‖ ·‖p, 1 ≤ p ≤ ∞, is also a norm on the
linear space C

n of n-component vectors with complex entries, over the
field C of complex numbers, provided that |vi| in the definition (2.37) of
‖ · ‖p is interpreted as the modulus of the complex number vi.

In order to highlight the difference between ‖ · ‖1, ‖ · ‖2 and ‖ · ‖∞,
in Figure 2.2 we plot the ‘unit spheres’ (or ‘unit circles’, in the case of
n = 2) corresponding to these three norms on V = R

2. We recall that

1 Hermann Minkowski (22 June 1864, Alexotas, Russia (now Kaunas, Lithuania) –
12 January 1909, Göttingen, Germany) held a chair at the University of Göttingen,
where he was exposed to Hilbert’s work on mathematical physics. Minkowski
realised that the ideas of Lorentz and Einstein can be best understood in terms
of non-Euclidean geometry, with space and time coupled into a four-dimensional
continuum. He died at the age of 44 from a ruptured appendix.
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1

1
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–1

(b)

(a)

(c)

Fig. 2.2. ‘Unit circles’ in the linear space V = R
2 with respect to three vector

norms: (a) the 1-norm; (b) the 2-norm; (c) the ∞-norm.

the unit sphere in a normed linear space V, with norm ‖ · ‖, is defined
as the set {v ∈ V: ‖v‖ = 1}. It can be seen from Figure 2.2 that

{v ∈ R
2: ‖v‖1 ≤ 1} ⊂ {v ∈ R

2: ‖v‖2 ≤ 1} ⊂ {v ∈ R
2: ‖v‖∞ ≤ 1} .

We leave it to the reader as an exercise to show that analogous inclusions
hold in R

n for any n ≥ 1. (See Exercise 8.)
The unit sphere in a normed linear space V with norm ‖ · ‖ is the

boundary of the closed unit ball B̄1(0) centred at 0 defined by

B̄1(0) = {v ∈ V: ‖v‖ ≤ 1} .

Analogously, the open unit ball centred at 0 is defined by

B1(0) = {v ∈ V: ‖v‖ < 1} .

More generally, for ε > 0 and ξ ∈ V,

B̄ε(ξ) = {v ∈ V: ‖v − ξ‖ ≤ ε}

is the closed ball of radius ε centred at ξ; analogously,

Bε(ξ) = {v ∈ V: ‖v − ξ‖ < ε}

is the open ball of radius ε centred at ξ.
Any norm on the linear space R

n×n of n×n matrices with real entries
will be referred to as a matrix norm. In particular, we shall now
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consider matrix norms which are induced by vector norms in a sense
that will be made precise in the next definition.

Definition 2.10 Given any norm ‖ · ‖ on the space R
n of n-dimensional

vectors with real entries, the subordinate matrix norm on the space
R
n×n of n × n matrices with real entries is defined by

‖A‖ = max
v∈Rn∗

‖Av‖
‖v‖ . (2.38)

In (2.38) we used R
n
∗ to denote R

n \ {0}, where, for sets A and B,
A \ B = {x ∈ A: x /∈ B}.

Remark 2.4 Let C
n×n denote the linear space of n × n matrices with

complex entries over the field C of complex numbers. Given any norm
‖ · ‖ on the linear space C

n, the subordinate matrix norm on C
n×n

is defined by

‖A‖ = max
v∈Cn∗

‖Av ‖
‖v ‖ ,

where C
n
∗ = C

n \ {0}.

It is easy to show that a subordinate matrix norm satisfies the ax-
ioms of norm listed in Definition 2.6; the details are left as an exercise.
Definition 2.10 implies that, for A ∈ R

n×n,

‖Av ‖ ≤ ‖A‖ ‖v ‖ , for all v ∈ R
n .

In a relation like this any vector norm may be used, but of course it is
necessary to use the same norm throughout. It follows from Definition
2.10 that, in any subordinate matrix norm ‖ · ‖ on R

n×n,

‖I‖ = 1

where I is the n × n identity matrix.
Given any vector v in R

n, it is a trivial matter to evaluate each of the
three norms ‖v ‖1, ‖v ‖2, ‖v ‖∞; however, it is not yet obvious how one
can calculate the corresponding subordinate matrix norm of a given ma-
trix A in R

n×n. Definition 2.10 is unhelpful in this respect: calculating
‖A‖ via (2.38) would involve the unpleasant task of maximising the func-
tion v �→ ‖Av ‖/‖v ‖ over R

n
∗ (or, equivalently, maximising w �→ ‖Aw‖

over the unit sphere {w ∈ R
n: ‖w‖ = 1}). This difficulty is resolved by

the following three theorems.
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Theorem 2.7 The matrix norm subordinate to the vector norm ‖ · ‖∞
can be expressed, for an n × n matrix A = (aij)1≤i,j≤n ∈ R

n×n, as

‖A‖∞ =
n

max
i=1

n∑
j=1

|aij | . (2.39)

This result is often loosely expressed by saying that the ∞-norm of a
matrix is its largest row-sum.

Proof Given an arbitrary vector v in R
n
∗ , write K = ‖v ‖∞, so that

|vj | ≤ K for j = 1, 2, . . . , n. Then,

|(Av)i| =

∣∣∣∣∣∣
n∑
j=1

aijvj

∣∣∣∣∣∣ ≤
n∑
j=1

|aij | |vj | ≤ K
n∑
j=1

|aij | , i = 1, 2, . . . , n .

Now we define

C =
n

max
i=1

n∑
j=1

|aij | (2.40)

and note that
‖Av ‖∞
‖v ‖∞

=
maxni=1 |(Av)i|

‖v ‖∞
=

maxni=1 |(Av)i|
K

≤ C ∀v ∈ R
n
∗ .

Hence, ‖A‖∞ ≤ C.
Next we show that ‖A‖∞ ≥ C. To do so, we take v to be a vector in

R
n
∗ each of whose entries is ±1, with the choice of sign to be made clear

below. In the definition of C, equation (2.40), let m be the value of i

for which the maximum is attained, or any one of the values if there is
more than one. Then, in the vector v we give the element vj the same
sign as that of amj ; if amj happens to be zero, the choice of the sign of
vj is irrelevant. With this definition of v we see at once that

‖Av‖∞=
n

max
i=1

∣∣∣∣∣∣
n∑
j=1

aijvj

∣∣∣∣∣∣ ≥
∣∣∣∣∣∣
n∑
j=1

amjvj

∣∣∣∣∣∣ =
n∑
j=1

|amj | |vj | =
n∑
j=1

|amj | = C .

As ‖v‖∞ = 1, it follows that

‖Av‖∞ ≥ C‖v‖∞ ,

which means that ‖A‖∞ ≥ C. Hence ‖A‖∞ = C, as required.
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Theorem 2.8 The matrix norm subordinate to the vector norm ‖ · ‖1

can be expressed, for an n × n matrix A = (aij)1≤i,j≤n ∈ R
n×n, as

‖A‖1 =
n

max
j=1

n∑
i=1

|aij | .

This is often loosely expressed by saying that the 1-norm of a matrix is
its largest column-sum. The proof of this theorem is very similar to that
of the previous one, and is left as an exercise (see Exercise 7). Note that
Theorems 2.7 and 2.8 mean that the 1-norm of a matrix A = (aij)1≤i,j≤n
is the ∞-norm of the transpose AT = (aji)1≤i,j≤n of the matrix.

Before we state a characterisation of the subordinate matrix 2-norm,
we recall the following definition from linear algebra.

Definition 2.11 Suppose that A ∈ R
n×n. A complex number λ, for

which the set of linear equations

Ax = λx

has a nontrivial solution x ∈ C
n
∗ = C

n \ {0}, is called an eigenvalue
of A; the associated solution x ∈ C

n
∗ is called an eigenvector of A

(corresponding to λ).

Now we are ready to state our result.

Theorem 2.9 Let A ∈ R
n×n and denote the eigenvalues of the matrix

B = ATA by λi, i = 1, 2, . . . , n. Then,

‖A‖2 =
n

max
i=1

λ
1/2
i .

Proof Note first that the matrix B is symmetric, i.e., B = BT; therefore
all of its eigenvalues are real and the associated eigenvectors belong to
R
n
∗ . (You may wish to prove this: consult the proof of Theorem 3.1, part

(ii), for a hint.) Moreover, all eigenvalues of B are nonnegative, since if
v ∈ R

n
∗ is an eigenvector of B and λ is the associated eigenvalue λ, then

AT Av = Bv = λv

and therefore

λ =
vTATAv

vTv
=

‖Av‖2
2

‖v‖2
2

≥ 0 .

Suppose that the vectors wi ∈ R
n
∗ , i = 1, 2, . . . , n, are eigenvectors of B

corresponding to the eigenvalues λi, i = 1, 2, . . . , n. Since B is symmetric
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we may assume that the vectors wi are orthogonal, i.e., wT
i wj = 0 for

i �= j, and we can normalise them so that wT
i wi = 1 for i = 1, 2, . . . , n.

Now choose an arbitrary vector u in R
n
∗ and express it as a linear com-

bination of the vectors wi, i = 1, 2, . . . , n:

u = c1w1 + · · · + cnwn .

Then,

Bu = c1λ1w1 + · · · + cnλnwn .

We may assume, without loss of generality, that

(0 ≤)λ1 ≤ λ2 ≤ · · · ≤ λn .

Using the orthonormality of the vectors wi, i = 1, 2, . . . , n, we get that

‖Au‖2
2 = uTATAu = uTBu

= c2
1λ1 + · · · + c2

nλn

≤ (c2
1 + · · · + c2

n)λn
= λn‖u‖2

2 , (2.41)

for any vector u ∈ R
n
∗ . Hence ‖A‖2

2 ≤ λn. To prove equality we simply
choose u = wn in (2.41), so that c1 = · · · = cn−1 = 0 and cn = 1.

The square roots of the (nonnegative) eigenvalues of ATA are referred
to as the singular values of A. Thus we have shown that the 2-norm
of a matrix A is equal to the largest singular value of A.

If the matrix A is symmetric, then B = ATA = A2, and the eigenval-
ues of B are just the squares of the eigenvalues of A. In this special case
the 2-norm of A is the largest of the absolute values of its eigenvalues.

Theorem 2.10 Given that ‖ · ‖ is a subordinate matrix norm on R
n×n,

‖AB‖ ≤ ‖A‖ ‖B‖

for any two matrices A and B in R
n×n.

Proof From the definition of subordinate matrix norm,

‖AB‖ = max
v∈Rn∗

‖ABv ‖
‖v ‖ .

As

‖ABv ‖ ≤ ‖A‖ ‖Bv ‖
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D

V W

f(x)x f

Fig. 2.3. ‘Input’ x ∈ D ⊂ V and ‘output’ f(x) ∈ W for a mapping f : V → W.

for all v ∈ R
n
∗ , we have

‖AB‖ ≤ max
v∈Rn∗

‖A‖ ‖Bv ‖
‖v ‖

= ‖A‖ max
v∈Rn∗

‖Bv ‖
‖v ‖

= ‖A‖ ‖B‖ ,

and hence the desired result.

Now we are ready to embark on the study of sensitivity to pertur-
bations in the problem of matrix inversion. In order to motivate the
concept of condition number of a matrix which will play a key role in
the analysis, we begin with a discussion of ‘conditioning’ in a slightly
more general context.

Consider a mapping f from a subset D of a normed linear space V
with norm ‖ · ‖V into another normed linear space W with norm ‖ · ‖W ,
depicted in Figure 2.3, where x ∈ D ⊂ V is regarded as the ‘input’ for f

and f(x) ∈ W is the ‘output’. We shall be concerned with the sensitivity
of the output to perturbations in the input; therefore, as a measure of
sensitivity, we define the absolute condition number of f by

Cond(f) = sup
x,y∈D⊂V
x
=y

‖f(y) − f(x)‖W
‖y − x‖V

. (2.42)

If Cond(f) = +∞ or if 1 � Cond(f) < +∞, we say that the mapping
f is ill-conditioned.

Example 2.5 Consider the function f : x ∈ D �→ √
x, where D is a

closed subinterval of [0,∞). Clearly, if D = [1, 2], then Cond(f) = 1/2,
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while if D = [0, 1], then Cond(f) = +∞. Indeed, in the latter case,
perturbing x = 0 to x = ε2, 0 < ε � 1, leads to a perturbation of the
function value f(0) = 0 to f(ε2) = ε = 1

εε
2: a magnification by a factor

1
ε � 1 in comparison with the size of the perturbation in x.

When ‖f(y)−f(x)‖W/‖y−x‖V exhibits large variation as (x, y) ranges
through D × D, it is more helpful to consider a finer, local measure of
conditioning, the absolute local condition number, at x ∈ D ⊂ V,
of the function f , defined by

Condx(f) = sup
δx∈V\{0}
x+δx∈D

‖f(x + δx) − f(x)‖W
‖δx‖V

. (2.43)

Example 2.6 Let us consider the function f : x ∈ D �→
√
x, defined

on the interval D = (0,∞). The absolute local condition number of f

at x ∈ D is Condx(f) = 1/(2
√
x). Clearly, limx→0+ Condx(f) = +∞,

limx→+∞ Condx(f) = 0.

Although the definitions (2.42) and (2.43) seem intuitive, they are not
always satisfactory from the practical point of view since they depend
on the magnitudes of f(x) and x. A more convenient definition of con-
ditioning is arrived at by rescaling (2.43) by the norms of f(x) and x.
This leads us to the notion of relative local condition number

condx(f) = sup
δx∈V\{0}
x+δx∈D

‖f(x + δx) − f(x)‖W/‖f(x)‖W
‖δx‖V/‖x‖V

,

where it is implicitly assumed that x ∈ V \ {0} and f(x) ∈ W \ {0}.
The next example highlights the difference between the absolute local
condition number and the relative local condition number of f .

Example 2.7 Let us consider the function f : x ∈ D �→ √
x, defined

on the interval D = (0,∞). Recall from the preceding example that the
absolute local condition number of f at x ∈ D approaches +∞ as x tends
to zero. In contrast with this, the relative local condition number of f is
condx(f) = 1/2 for all x ∈ D.
You may also wish to ponder the following, seemingly paradoxical,

observation: limε→0 condε(sin) = 1 and limε→0 condπ−ε(sin) = ∞, even
though sin 0 = sinπ = 0 and Cond0(sin) = Condπ(sin) = 1.

Since the present section is concerned with the solution of the linear
system Ax = b, where A ∈ R

n×n is nonsingular and b ∈ R
n, let us
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consider the relative local condition number of the mapping

A−1 · : b ∈ R
n �→ A−1b ∈ R

n

at b ∈ R
n
∗ = R

n \ {0}. We suppose that R
n has been equipped with a

vector norm ‖ · ‖ and, since there is no danger of confusion, we denote
the associated subordinate matrix norm by ‖ · ‖ also. Noting that A−1·
is defined on the whole of R

n, it follows that D = V = R
n, W = R

n and
we deduce that

condb(A−1·) = sup
δb∈Rn∗

‖A−1(b + δb) − A−1b‖ / ‖A−1b‖
‖δb‖ / ‖b‖

= ‖A−1‖ ‖b‖
‖A−1b‖ .

Since ‖b‖ = ‖A(A−1b)‖ ≤ ‖A‖ ‖A−1b‖, we conclude that

condb(A−1·) ≤ ‖A−1‖ ‖A‖ . (2.44)

If now, instead, we consider the mapping

A · : x ∈ R
n �→ Ax ∈ R

n,

an identical argument shows that, for x ∈ R
n
∗ ,

condx(A·) ≤ ‖A‖ ‖A−1‖ . (2.45)

The inequalities (2.44) and (2.45) indicate that the number ‖A−1‖ ‖A‖ =
‖A‖ ‖A−1‖ plays a relevant role in the analysis of sensitivity to pertur-
bations in numerical linear algebra; therefore we adopt the following
definition.

Definition 2.12 The condition number of a nonsingular matrix A

is defined by

κ(A) = ‖A‖ ‖A−1‖ .

Clearly, κ(A−1) = κ(A). Further, since AA−1 = I, it follows from
Theorem 2.10 that κ(A) ≥ 1 for every matrix A. If κ(A) � 1, the
matrix is said to be ill-conditioned. Evidently the condition number
of a matrix is unaffected by scaling all its elements by multiplying by a
nonzero constant.1

1 We note in passing that, more generally, the condition number of a matrix A ∈
Rm×n is defined by κ(A) = ‖A‖ ‖A+‖ where A+ is the Moore–Penrose generalised
inverse of A. In the special case when m = n and A is nonsingular, A+ = A−1.
For further details in this direction, we refer to the Notes at the end of the chapter.
Here, the norm ‖ · ‖ on Rm×n is defined as in (2.38). Theorems 2.7 and 2.8 are



2.7 Norms and condition numbers 71

There is a condition number for each norm; for example, if we use the
2-norm, then κ2(A) = ‖A‖2 ‖A−1‖2, and so on. Indeed, the size of the
condition number of a matrix A ∈ R

n×n is strongly dependent on the
choice of the norm in R

n. In order to illustrate the last point, let us
consider the unit lower triangular matrix A ∈ R

n×n defined by

A =




1 0 0 0 . . . 0
1 1 0 0 . . . 0
1 0 1 0 . . . 0
1 0 0 1 . . . 0
. . . . . . . . . . . . . . . . . .

1 0 0 0 . . . 1




, (2.46)

and note that its inverse is

A−1 =




1 0 0 0 . . . 0
−1 1 0 0 . . . 0
−1 0 1 0 . . . 0
−1 0 0 1 . . . 0
. . . . . . . . . . . . . . . . . .

−1 0 0 0 . . . 1




.

Since

‖A‖1 = n and ‖A−1‖1 = n ,

it follows that κ1(A) = n2. On the other hand,

‖A‖∞ = 2 and ‖A−1‖∞ = 2 .

so that κ∞(A) = 4 � n2 = κ1(A) when n � 1. (A question for the
curious: how does the condition number κ2(A) of the matrix A in (2.46)
depend on the size n of A? See Exercise 11.)

It is left as an exercise to show that for a symmetric matrix A (i.e.,
when AT = A), the 2-norm condition number κ2(A) is the ratio of the
largest of the absolute values of the eigenvalues of A to the smallest of
the absolute values of the eigenvalues (see Exercise 9).

easily extended to show that, for A ∈ Rm×n,

‖A‖∞ =
m
max
i=1

n∑
j=1

|aij | and ‖A‖1 =
n
max
j=1

m∑
i=1

|aij | .

The 2-norm of A, ‖A‖2, is equal to the largest singular value of A, i.e., the square
root of the largest eigenvalue of the matrix ATA ∈ Rn×n, just as in Theorem 2.9.
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We can now assess the sensitivity of the solution of the system Ax = b

to changes in the right-hand side vector b.

Theorem 2.11 Suppose that A ∈ R
n×n is a nonsingular matrix, b ∈ R

n
∗ ,

Ax = b and A(x+ δx) = b+ δb, with δx, δb ∈ R
n. Then, x ∈ R

n
∗ and

‖δx‖
‖x‖ ≤ κ(A)

‖δb‖
‖b‖ .

Proof Evidently,

b = Ax and δx = A−1(b + δb) − x = A−1δb .

As b �= 0 and A is nonsingular, the first of these implies that x �= 0.
Further,

‖b‖ ≤ ‖A‖ ‖x‖ and ‖δx‖ ≤ ‖A−1‖ ‖δb‖ .

The result follows immediately by multiplying these inequalities.

Owing to the effect of rounding errors during the calculation, the
numerical solution of Ax = b will not be exact. The numerical solution
may be written x+δx, and we shall usually find that this vector satisfies
the equation A(x+δx) = b+δb, where the elements of δb are very small.
If the matrix A has a large condition number, however, the elements of
δx may not be so small. An example of this will be presented in the
next section.

2.8 Hilbert matrix

We consider the Hilbert matrix1 Hn of order n, whose elements are

hij =
1

i + j − 1
, i, j = 1, 2, . . . , n .

This matrix is symmetric and positive definite (i.e., HT
n = Hn, and

xTHnx > 0 for all x ∈ R
n
∗ ), and therefore all of its eigenvalues are real

and positive (cf. Theorem 3.1, part (ii)). However, Hn becomes very
nearly singular as n increases. Table 2.1 shows the largest and smallest
eigenvalues, and the 2-norm condition number κ2(Hn) of Hn, for various
values of n.
1 David Hilbert (23 January 1862, Königsberg, Prussia (now Kaliningrad, Russia) –
14 February 1943, Göttingen, Germany) was the most prominent member of the
Göttingen school of mathematics. He made significant contributions to many areas
of the subject, including algebra, geometry, number theory, calculus of variations,
functional analysis, integral equations, and the foundations of mathematics.
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Table 2.1. Eigenvalues and condition number of the Hilbert matrix Hn.

n λmax λmin κ2(Hn)

5 1.6 3.3 × 10−6 4.8 × 105

10 1.8 1.1 × 10−13 1.6 × 1013

15 1.8 3.0 × 10−21 6.1 × 1020

20 1.9 7.8 × 10−29 2.5 × 1028

25 2.0 1.9 × 10−36 1.0 × 1036
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Fig. 2.4. Condition number κ2(Hn) of the Hilbert matrix Hn of size n =
2, 3, . . . , 12 in the 2-norm, against n, in a semilogarithmic-scale plot.

Figure 2.4 depicts the logarithm of the condition number κ2(Hn) in
the 2-norm of the Hilbert matrix Hn against its order, n; the straight line
in our semilogarithmic-scale plot indicates that κ2(Hn), as a function of
n, exhibits exponential growth. Indeed, it can be shown that

κ2(Hn) ∼
(√

2 + 1
)4n+4

215/4
√
πn

as n → ∞ .

We now define the vector b with elements bi =
∑n
j=1(j/(i + j − 1)),

i = 1, 2, . . . , n, chosen so that the solution of Ax = b, with A = Hn,
is the vector x with elements xi = i, i = 1, 2, . . . , n. We obtain a
numerical solution of the system, using the method described in Section
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2.5 to give the calculated vector x+ δx, and then compute the residual
δb from A(x+δx) = b+δb. The calculation uses arithmetic operations
correct to 15 decimal digits, which is roughly the accuracy used by many
computer systems. The results are listed in Table 2.2.

Table 2.2. Rounding errors in the solution of Hnx = b, where Hn is
the Hilbert matrix of order n and b = (1, 2, . . . , n)T.

n ‖δb‖2/‖b‖2 ‖δx‖2/‖x‖2

5 1.2 × 10−15 8.5 × 10−11

10 1.7 × 10−15 1.3 × 10−3

15 2.8 × 10−15 4.1
20 6.3 × 10−15 8.7
25 1.9 × 10−13 5.5 × 102

The relative size of the residual is, in nearly every case, about the size
of the basic rounding error, 10−15. The resulting errors in x are smaller
than the bound given by Theorem 2.11, as might be expected, since
that bound corresponds to the worst possible case. In any case, for the
Hilbert matrix of order greater than 14 the error is larger than the calcu-
lated solution itself, which renders the calculated solution meaningless.
For matrices of this kind the condition number and the bound given
by Theorem 2.11 are so large that they have little practical relevance,
though they do indicate that, due to sensitivity to rounding errors, the
numerical calculations are of unreliable accuracy.

The Hilbert matrix is, of course, a rather extreme example of an ill-
conditioned matrix. However, we shall meet it in an important problem
in Section 9.3 concerning the least squares approximation of a function
by polynomials, where we shall see how a reformulation of the problem
using an orthonormal basis avoids the disastrous loss of accuracy that
would otherwise occur. In the next section, we introduce the idea of
least squares approximation in the context of linear algebra and consider
the solution of the resulting system of linear equations using the QR
algorithm; this, too, relies on the notion of (ortho)normalisation.

2.9 Least squares method

Up to now, we have been dealing with systems of linear equations of
the form Ax = b where A ∈ R

n×n. However, it is frequently the case
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in practical problems (typically, in problems of data-fitting) that the
matrix A is not square but rectangular, and we have to solve a linear
system of equations Ax = b with A ∈ R

m×n, b ∈ R
m, with m > n; since

there are more equations than unknowns, in general such a system will
have no solution. Consider, for example, the linear system (with m = 3,
n = 2) 

 3 1
1 1
4 2


(

x1

x2

)
=


 1

0
2


 ;

by adding the first two of the three equations and comparing the result
with the third, it is easily seen that there is no solution. If, on the
other hand, m < n, then the situation is reversed and there may be an
infinite number of solutions. Consider, for example, the linear system
(with m = 1, n = 2)

(3 1)
(

x1

x2

)
= 1 ;

any vector x = (µ, 1 − 3µ)T, with µ ∈ R, is a solution to this system.
Suppose that m ≥ n; we may then need to find a vector x ∈ R

n

which satisfies Ax − b ≈ 0 in R
m as nearly as possible in some sense.

This suggests that we define the residual vector r = Ax− b and require
to minimise a certain norm of r in R

m. From the practical point of
view, it is particularly convenient to minimise the residual vector r in
the 2-norm on R

m; this leads to the least squares problem:

Minimise ‖Ax− b‖2 .
x ∈ R

n

This is clearly equivalent to minimising the square of the norm; so, on
noting that

‖Ax− b‖2
2 = (Ax− b)T(Ax− b) ,

the problem may be restated as

Minimise (Ax− b)T(Ax− b) .
x ∈ R

n

Since

(Ax− b)T(Ax− b) = xTATAx− 2xTATb + bTb ,

the quantity to be minimised is a nonnegative quadratic function of the
n components of the vector x; the minimum therefore exists, and may
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be found by equating to zero the partial derivatives with respect to the
components. This leads to the system of equations

Bx = ATb , where B = ATA .

The matrix B is symmetric, and if A has full rank, n, then B is non-
singular; it is called the normal matrix, and the system Bx = ATb is
called the system of normal equations.

The normal equations have important theoretical properties, but do
not lead to a satisfactory numerical algorithm, except for fairly small
problems. The difficulty is that in a practical least squares problem the
matrix A is likely to be quite ill-conditioned, and B = ATA will then be
extremely ill-conditioned. For example, if

A =
(

ε 0
0 1

)

where ε ∈ (0, 1), then κ2(A) = ε−1 > 1, while

κ2(B) = κ2(ATA) = ε−2 = ε−1κ2(A) � κ2(A)

when 0 < ε � 1. If possible, one should avoid using a method which
leads to such a dramatic deterioration of the condition number.

There are various alternative techniques which avoid the direct con-
struction of the normal matrix ATA, and so do not lead to this extreme
ill-conditioning. Here we shall describe just one algorithm, which begins
by factorising the matrix A, but using an orthogonal matrix rather than
the lower triangular factor as in Section 2.3.

Theorem 2.12 Suppose that A ∈ R
m×n where m ≥ n. Then, A can be

written in the form

A = Q̂R̂ ,

where R̂ is an upper triangular n×n matrix, and Q̂ is an m×n matrix
which satisfies

Q̂TQ̂ = In , (2.47)

where In is the n × n identity matrix; see Figure 2.5. If rank(A) = n,
then R̂ is nonsingular.

Proof We use induction on n, the number of columns in A. The theorem
clearly holds when n = 1 so that A has only one column. Indeed, writing
c for this column vector and assuming that c �= 0, the matrix Q̂ has just
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RQ

Fig. 2.5. QR factorisation of A ∈ R
m×n, m ≥ n: A = Q̂R̂, Q̂ ∈ R

m×n,

Q̂TQ̂ = In, and the matrix R̂ ∈ R
n×n is upper triangular.

one column, the vector c/‖c‖2, and R̂ has a single element, ‖c‖2. In
the special case where c is the zero vector we can choose R̂ to have
the single element 0, and Q̂ to have a single column which can be an
arbitrary vector in R

m whose 2-norm is equal to 1.
Suppose that the theorem is true when n = k, where 1 ≤ k < m.

Consider a matrix A which has m rows and k + 1 columns, partitioned
as

A = (Ak a) ,

where a ∈ R
m is a column vector and Ak has k columns. To obtain the

desired factorisation Q̂R̂ of A we seek Q̂ = (Q̂k q) and

R̂ =
(

R̂k r

0 α

)

such that

A = (Ak a) = (Q̂k q)
(

R̂k r

0 α

)
.

Multiplying this out and requiring that Q̂TQ̂ = Ik+1, the identity matrix
of order k + 1, we conclude that

Ak = Q̂kR̂k , (2.48)

a = Q̂kr + qα , (2.49)

Q̂T
k Q̂k = Ik , (2.50)

qTQ̂k = 0T , (2.51)

qTq = 1 . (2.52)
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These equations show that Q̂kR̂k is the factorisation of Ak, which exists
by the inductive hypothesis, and then lead to

r = Q̂T
k a ,

q = (1/α)(a− Q̂kQ̂
T
k a) ,

where α = ‖a − Q̂kQ̂
T
k a‖2. The number α is the constant required to

ensure that the vector q is normalised.
The construction fails when a − Q̂kQ̂

T
k a = 0, for then the vector q

cannot be normalised. In this case we choose q to be any normalised
vector in R

m which is orthogonal in R
m to all the columns of Q̂k, for

then qTQ̂k = 0T as required. The condition at the beginning of the
proof, that k < m, is required by the fact that when k = m the matrix
Q̂m is a square orthogonal matrix, and there is no vector q in R

m \ {0}
such that qTQ̂m = 0T.

With these definitions of q, r, α, Q̂k and R̂k we have constructed the
required factors of A, showing that the theorem is true when n = k + 1.
Since it holds when n = 1 the induction is complete.

Now, for the final part, suppose that rank(A) = n. If R̂ were singular,
there would exist a nonzero vector p ∈ R

n such that R̂p = 0; then,
Ap = Q̂R̂p = 0, and hence rank(A) < n, contradicting our hypothesis
that rank(A) = n. Therefore, if rank(A) = n, then R̂ is nonsingular.

The matrix factorisation whose existence is asserted in Theorem 2.12
is called the QR factorisation. Here, we shall present its use in the
solution of least squares problems. In Chapter 5 we shall revisit the idea
in a different context which concerns the numerical solution of eigenvalue
problems.

Theorem 2.13 Suppose that A ∈ R
m×n, with m ≥ n and rank(A) = n,

and let b ∈ R
m. Then, there exists a unique least squares solution of

the system of equations Ax = b: a vector x in R
n which minimises the

function y �→ ‖Ay− b‖2 over all y in R
n. The vector x can be obtained

by finding the factors Q̂ and R̂ of A defined in Theorem 2.12, and then
solving the nonsingular upper triangular system R̂x = Q̂Tb.

Proof The matrix Q̂ has m rows and n columns, with m ≥ n, and it
satisfies

Q̂TQ̂ = In .
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We shall suppose that m > n, the case m = n being a trivial special
case with

x = A−1b = (Q̂R̂)−1b = R̂−1Q̂−1b = R̂−1Q̂Tb ,

and hence R̂x = Q̂Tb, as required.
For m > n now, the vector b ∈ R

m can be written as the sum of two
vectors:

b = bq + br ,

where bq is in the linear space spanned by the n columns of the matrix Q̂,
and br is in the orthogonal complement of this space in R

m. The vector
bq is a linear combination of the columns of Q̂, and br is orthogonal to
every column of Q̂; i.e., there exists c ∈ R

n such that

b = bq + br , bq = Q̂c , Q̂Tbr = 0 . (2.53)

Now, suppose that x is the solution of R̂x = Q̂Tb, and that y is any
vector in R

n. Then,

Ay − b = Q̂R̂y − b

= Q̂R̂(y − x) + Q̂R̂x− b

= Q̂R̂(y − x) + Q̂Q̂Tb− b

= Q̂R̂(y − x) + Q̂Q̂Tbq − bq + Q̂Q̂Tbr − br

= Q̂R̂(y − x) + Q̂Q̂TQ̂c − bq − br

= Q̂R̂(y − x) − br ,

where we have used (2.53) repeatedly; in particular, the last equality
follows by noting that Q̂TQ̂ = In. Hence

‖Ay − b‖2
2 = (y − x)TR̂TQ̂TQ̂R̂(y − x) + bT

r br − 2(y − x)TR̂TQ̂Tbr

= ‖R̂(y − x)‖2
2 + ‖br‖2

≥ ‖br‖2

since Q̂Tbr = 0. Thus ‖Ay − b‖2 is smallest when R̂(y −x) = 0, which
implies that y = x, since the matrix R̂ is nonsingular. Hence x, defined
as the solution of R̂x = Q̂Tb, is the required least squares solution.

2.10 Notes

There are many good books on the subject of numerical linear algebra
which cover the topics discussed in this chapter in much greater detail,
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and address questions which we have not touched on here. Without any
attempt to be exhaustive, we single out four texts from the vast litera-
ture. The first two books on the list below are well-known monographs
on the subject, while the last two are excellent textbooks.

➧ G.H. Golub and C.F. Van Loan, Matrix Computations, Third
Edition, Johns Hopkins University Press, Baltimore, 1996.

➧ N.J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM,
Philadelphia, 1996.

➧ L.N. Trefethen and D. Bau, III,Numerical Linear Algebra, SIAM,
Philadelphia, 1997.

➧ P.G. Ciarlet, Introduction to Numerical Linear Algebra and Opti-
misation, Cambridge University Press, Cambridge, 1989.

As we have already noted in Section 2.2, the invention of the elimi-
nation technique is attributed to Gauss who published the method in
his Theoria motus (1809), although the idea was already known to the
Chinese two thousand years ago. Gauss himself was concerned with pos-
itive definite systems. The method was extended to linear systems with
general matrices by Jacobi.1 The interpretation of Gaussian elimination
as matrix factorisation is due to P.S. Dwyer: A matrix presentation of
least squares and correlation theory with matrix justification of improved
methods of solutions, Ann. Math. Stat. 15, 82–89, 1944.

The sensitivity of Gaussian elimination to rounding errors was studied
by Wilkinson2 in Error analysis of direct methods of matrix inversion, J.
Assoc. Comput. Math. 8, 281–330, 1961. The idea of pivoting was used
as early as 1947 by von Neumann3 and Goldstein.4 The concept of the
condition number of a matrix was introduced by Turing5 in Rounding-
off errors in matrix processes, Quart. J. Mech. Appl. Math. 1, 287–
308, 1948. Our treatment of condition numbers follows the textbook of
Trefethen and Bau, cited above.
1 Carl Gustav Jacob Jacobi (10 December 1804, Potsdam, Prussia, Holy Roman Em-
pire (now Germany) – 18 February 1851, Berlin, Germany) had made important
contributions to the theory of elliptic functions and differential equations. The En-
glish translation, by G.W. Stuart, of Jacobi’s German original article is available
from the Internet on ftp://thales.cs.umd.edu/pub/biographical/xhist.html

2 James Hardy Wilkinson (27 September 1919, Strood, Kent, England – 5 October
1986, London, England).

3 John von Neumann (28 December 1903, Budapest, Austria–Hungary (now in
Hungary) – 8 February 1957, Washington DC, USA).

4 Sydney Goldstein (3 December 1903, Hull, England – 22 January 1989, Belmont,
Massachusetts, USA).

5 Alan Mathison Turing (23 June 1912, London, England – 7 June 1954, Wilmslow,
Cheshire, England).
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Normed linear spaces play a key role in functional analysis (see, for ex-
ample, K. Yosida, Functional Analysis, Third Edition, Springer, Berlin,
1971, page 30). Here, we have concentrated on finite-dimensional normed
linear spaces over the field of real numbers.

The relevance of norms in numerical linear algebra was highlighted by
Householder1 in his book The Theory of Matrices in Numerical Analysis,
Blaisdell, New York, 1964.

The idea of least squares fitting is due to Gauss, who invented the
method in the 1790s. However, it was the French mathematician Le-
gendre2 who first published the method in 1806 in a book on deter-
mining the orbits of comets. Legendre’s method involved a number of
observations taken at equal intervals and he assumed that the comet
followed a parabolic path, so he ended up with more equations than
there were unknowns. Legendre then applied his methods to the data
known for two comets. In an Appendix to the book Legendre described
the least squares method of fitting a curve to the data available. Gauss
published his version of the least squares method in 1809 and, although
acknowledging that it had already appeared in Legendre’s book, Gauss
nevertheless claimed priority for himself. This greatly hurt Legendre,
leading to one of the infamous priority disputes in the history of math-
ematics. A recent exhaustive monograph on numerical algorithms for
least squares problems is due to Å. Björk: Numerical Methods for Least
Squares Problems, SIAM, Philadelphia, 1996.

The version of the QR factorisation considered here is the reduced
version, following the terminology in Chapter 7 of Trefethen and Bau.
In the full version of the QR factorisation for a matrix A ∈ R

m×n, we
have A = QR, where Q ∈ R

m×m, R ∈ R
m×n (cf. Chapter 5).

In a footnote to Definition 2.12 we mentioned the Moore–Penrose
generalised inverse A+ of a matrix A ∈ R

m×n. A+ can be defined
through the singular value decomposition of A (cf. L.N. Trefethen and D.
Bau, III: Numerical Linear Algebra, SIAM, Philadelphia, 1997). Recall
that the singular values of A are the square roots of the (nonnegative)
eigenvalues of the matrix ATA.
1 Alton Scott Householder (5 May 1904, Rockford, Illinois, USA – 4 July 1993,
Malibu, California, USA) was one of the pioneers of numerical linear algebra.
Householder’s obituary by G.W. Stuart, published in SIAM News, is available from
http://www.inf.ethz.ch/research/wr/conferences/householder/stewart.html

2 Adrien-Marie Legendre (18 September 1752, Paris, France – 10 January 1833,
Paris, France).
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Theorem 2.14 (Singular value decomposition) Let A ∈ R
m×n;

then, there exist U ∈ R
m×n, Σ ∈ R

n×n and V ∈ R
n×n such that

A = UΣV T ,

where Σ is a diagonal matrix whose diagonal entries, σii, i = 1, 2, . . . , n,
are the singular values of A, UTU = In and V TV = In, with In denoting
the n × n identity matrix.

The Moore–Penrose generalised inverse of the diagonal matrix Σ ∈
R
n×n is defined as the diagonal matrix Σ+ ∈ R

n×n whose diagonal
entries are

σ+
ii =

{
σ−1
ii if σii �= 0 ,

0 if σii = 0 .

The generalised inverse A+ ∈ R
n×m of a matrix A ∈ R

m×n with singular
value decomposition A = UΣV T is defined by

A+ = V Σ+UT .

In the special case when m = n and A ∈ R
n×n is nonsingular, the n

singular values of A are all nonzero and therefore Σ+ = Σ−1. Hence,
also, A+ = A−1, which then justifies the use of the terminology ‘gener-
alised inverse’ for the matrix A+ defined above.

Exercises

2.1 Let n ≥ 2. Given the matrix A = (aij) ∈ R
n×n, the permutation

matrix Q ∈ R
n×n reverses the order of the rows of A, so that

(QA)i,j = an+1−i,j . If L ∈ R
n×n is a lower triangular matrix,

what is the structure of the matrix QLQ?
Show how to factorise A ∈ R

n×n in the form A = UL, where
U ∈ R

n×n is unit upper triangular and L ∈ R
n×n is lower trian-

gular. What conditions on A will ensure that the factorisation
exists? Give an example of a square matrix A which cannot be
factorised in this way.

2.2 Let n ≥ 2. Consider a matrix A ∈ R
n×n whose every leading

principal submatrix of order less than n is nonsingular. Show
that A can be factored in the form A = LDU , where L ∈ R

n×n

is unit lower triangular, D ∈ R
n×n is diagonal and U ∈ R

n×n is
unit upper triangular.

If the factorisation A = LU is known, where L is unit lower



Exercises 83

triangular and U is upper triangular, show how to find the fac-
tors of the transpose AT.

2.3 Let n ≥ 2 and suppose that the matrix A ∈ R
n×n is nonsingular.

Show by induction, as in Theorem 2.3, that there are a permuta-
tion matrix P ∈ R

n×n, a lower triangular matrix L ∈ R
n×n, and

a unit upper triangular matrix U ∈ R
n×n such that PA = LU .

By finding a suitable 2× 2 matrix A, or otherwise, show that
this may not be true if A is singular.

2.4 The lower triangular matrix L ∈ R
n×n, n ≥ 2, is nonsingular,

and the vector b ∈ R
n is such that bi = 0, i = 1, 2, . . . , k, with

1 ≤ k ≤ n. The vector y ∈ R
n is the solution of Ly = b.

Show, by partitioning L, that yj = 0, j = 1, 2, . . . , k. Hence
give an alternative proof of Theorem 2.1(iv), that the inverse of
a nonsingular lower triangular matrix is itself lower triangular.

2.5 Given a matrix A ∈ R
n×n, define the matrix B ∈ R

n×2n in
which the first n columns are the columns of A, and the last n

columns are the columns of the identity matrix In. Consider the
following computational scheme. Treat the rows of the matrix
B in order, so that j = 1, 2, . . . , n. Multiply every element in
row j by the reciprocal of the diagonal element, 1/bjj ; then,
replace every element bik which is not in row j, so that i �= j,
by bik − bijbjk.

Show that the result is equivalent to multiplying B on the
left by a sequence of matrices. Explain why, at the end of the
computation, the first n columns of B are the columns of the
identity matrix In, and the last n columns are the columns of
the inverse matrix A−1. Give a condition on the matrix A which
will ensure that the computation does not break down.

Show that the process as described requires approximately
2n3 multiplications, but that, if the multiplications in which one
of the factors is zero are not counted, the total is approximately
n3.

2.6 Use the method of Exercise 5 to find the inverse of the matrix

A =


 2 4 2

1 0 3
3 1 2


 .
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2.7 Suppose that for a matrix A ∈ R
n×n,

n∑
i=1

|aij | ≤ C , j = 1, 2, . . . , n .

Show that, for any vector x ∈ R
n,

n∑
i=1

|(Ax)i| ≤ C‖x‖1 .

Find a nonzero vector x for which equality can be achieved, and
deduce that

‖A‖1 =
n

max
j=1

n∑
i=1

|aij | .

2.8 (i) Show that, for any vector v = (v1, . . . , vn)T ∈ R
n,

‖v‖∞ ≤ ‖v‖2 and ‖v‖2
2 ≤ ‖v‖1 ‖v‖∞ .

In each case give an example of a nonzero vector v for which
equality is attained. Deduce that ‖v‖∞ ≤ ‖v‖2 ≤ ‖v‖1. Show
also that ‖v‖2 ≤ √

n ‖v‖∞.
(ii) Show that, for any matrix A ∈ R

m×n,

‖A‖∞ ≤
√
n ‖A‖2 and ‖A‖2 ≤

√
m ‖A‖∞ .

In each case give an example of a matrix A for which equality
is attained. (See the footnote following Definition 2.12 for the
meaning of ‖A‖1, ‖A‖2 and ‖A‖∞ when A ∈ R

m×n.)
2.9 Prove that, for any nonsingular matrix A ∈ R

n×n,

κ2(A) =
(
λn
λ1

)1/2

,

where λ1 is the smallest and λn is the largest eigenvalue of the
matrix ATA.

Show that the condition number κ2(Q) of an orthogonal ma-
trix Q is equal to 1. Conversely, if κ2(A) = 1 for the matrix A,
show that all the eigenvalues of ATA are equal; deduce that A

is a scalar multiple of an orthogonal matrix.
2.10 Let A ∈ R

n×n. Show that if λ is an eigenvalue of ATA, then

0 ≤ λ ≤ ‖AT‖ ‖A‖ ,

provided that the same subordinate matrix norm is used for
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both A and AT. Hence show that, for any nonsingular n × n

matrix A,

κ2(A) ≤ {κ1(A)κ∞(A)}1/2
.

2.11 For the matrix defined by (2.46) write down the matrix ATA.
Show that any vector x �= 0 is an eigenvector of ATA with
eigenvalue λ = 1, provided that x1 = 0 and x2 + · · · + xn = 0.
Show also that there are two eigenvectors with x2 = · · · = xn
and find the corresponding eigenvalues. Deduce that

κ2(A) = 1
2 (n + 1)

(
1 +

√
1 − 4

(n+1)2

)
.

2.12 Let B ∈ R
n×n and denote by I the identity matrix of order n.

Show that if the matrix I − B is singular, then there exists a
nonzero vector x ∈ R

n such that (I − B)x = 0; deduce that
‖B‖ ≥ 1, and hence that, if ‖A‖ < 1, then the matrix I − A is
nonsingular.

Now suppose that A ∈ R
n×n with ‖A‖ < 1. Show that

(I − A)−1 = I + A(I − A)−1 ,

and hence that

‖(I − A)−1‖ ≤ 1 + ‖A‖ ‖(I − A)−1‖ .

Deduce that

‖(I − A)−1‖ ≤ 1
1 − ‖A‖ .

2.13 Let A ∈ R
n×n be a nonsingular matrix and b ∈ R

n
∗ . Suppose

that Ax = b and (A+δA)(x+δx) = b, and that ‖A−1 δA‖ < 1.
Use the result of Exercise 12 to show that

‖δx‖
‖x‖ ≤ ‖A−1 δA‖

1 − ‖A−1 δA‖ .

2.14 Suppose that A ∈ R
n×n is a nonsingular matrix, and b ∈ R

n
∗ .

Given that Ax = b and A(x + δx) = b + δb, Theorem 2.11
states that

‖δx‖
‖x‖ ≤ κ(A)

‖δb‖
‖b‖ .

By considering the eigenvectors of ATA, show how to find vec-
tors b and δb for which equality is attained, when using the
2-norm.
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2.15 Find the QR factorisation of the matrix

A =


 9 −6

12 −8
0 20


 ,

and hence find the least squares solution of the system of linear
equations

9x − 6y = 300 ,

12x − 8y = 600 ,

20y = 900 .



3

Special matrices

3.1 Introduction

In this chapter we show how one can modify the elimination method for
the solution of Ax = b when the matrix A has certain special proper-
ties. In particular when A ∈ R

n×n is symmetric and positive definite
the amount of computational work can be halved. For matrices with a
band structure, having nonzero elements only in positions close to the
diagonal, the efficiency can be improved even more dramatically.

3.2 Symmetric positive definite matrices

Definition 3.1 The matrix A = (aij) ∈ R
n×n is said to be symmetric

if aij = aji for all i and j in the set {1, 2, . . . , n}; i.e., if A = AT. The
set of all symmetric matrices A ∈ R

n×n will be denoted by R
n×n
sym . A

matrix A ∈ R
n×n is called positive definite if

xTAx > 0

for every vector x ∈ R
n
∗ = R

n \ {0}.

Example 3.1 Consider the matrix A ∈ R
2×2,

A =
(

a b

c d

)

and a vector x = (x1, x2)T ∈ R
2
∗ = R

2 \ {0}.

Clearly, xTAx = ax2
1 + (b + c)x1x2 + dx2

2. The quadratic form on
the right-hand side is positive for all real numbers x1, x2 such that

87
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x = (x1, x2)T �= (0, 0)T = 0 if, and only if,

a > 0 , d > 0 and (b + c)2 < 4ad .

We see that if A ∈ R
2×2 is positive definite, then the diagonal elements of

A are positive. Further, noting that the third inequality can be rewritten
as

(b − c)2 < 4(ad − bc) = 4 det(A) ,

we deduce that the determinant of a positive definite matrix A ∈ R
2×2 is

positive. This, of course, is still true in the special case when A ∈ R
2×2
sym,

i.e., when b = c. �
The next theorem extends the observations of the last example to any

symmetric positive definite matrix A ∈ R
n×n.

Theorem 3.1 Suppose that n ≥ 2 and A = (aij) ∈ R
n×n
sym is positive

definite; then:

(i) all the diagonal elements of A are positive, that is, aii > 0, for
i = 1, 2, . . . , n;

(ii) all the eigenvalues of A are real and positive, and the eigenvectors
of A belong to R

n
∗ ;

(iii) the determinant of A is positive;
(iv) every submatrix B of A obtained by deleting any set of rows and

the corresponding set of columns from A is symmetric and pos-
itive definite; in particular, every leading principal submatrix is
positive definite;

(v) a2
ij < aiiajj for all i and j in {1, 2, . . . , n} such that i �= j;

(vi) the element of A with largest absolute value lies on the diagonal;
(vii) if α is the largest of the diagonal elements of A, then

|aij | ≤ α ∀ i, j ∈ {1, 2, . . . , n} .

Proof (i) Consider the vector x ∈ R
n with only one nonzero element,

in position i ∈ {1, 2, . . . , n}. Since A is positive definite and x ∈ R
n
∗ , it

follows that xiaiixi = xTAx > 0, and therefore aii > 0.
(ii) Suppose that λ ∈ C is an eigenvalue of A and let x ∈ C

n
∗ = C

n\{0}
denote the associated eigenvector. Further, let x̄ denote the vector in
C
n
∗ whose ith element is the complex conjugate of the ith element of
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x, i = 1, 2, . . . , n. As Ax = λx, it follows that x̄TAx = λ(x̄Tx), and
therefore, using the symmetry of A,

xTAx̄ = xTATx̄ = (x̄TAx)T = (λ(x̄Tx))T = λ(xTx̄) .

Complex conjugation then yields x̄TAx = λ̄(x̄Tx), and hence λ(x̄Tx) =
λ̄(x̄Tx). As x �= 0, it follows that λ = λ̄; i.e., λ is a real number.

The fact that the eigenvector associated with λ has real elements
follows by noting that all elements of the singular matrix A − λI are
real numbers. Therefore, the column vectors of A − λI are linearly
dependent in R

n. Hence there exist n real numbers x1, . . . , xn such that
(A − λI)x = 0, where x = (x1, . . . , xn)T.

Finally, as Ax = λx with λ ∈ R and x ∈ R
n
∗ , we have that xTAx =

λxTx. Since λ = xTAx/xTx and A is positive definite, λ is the ratio
of two positive real numbers and therefore also real and positive.

(iii) This follows from the fact that the determinant of A is equal to
the product of its eigenvalues, and the previous result. Indeed, since A

is symmetric, there exist an orthogonal matrix X and a diagonal matrix
Λ, whose diagonal elements are the eigenvalues λi, i = 1, 2, . . . , n, of A,
such that A = XTΛX = X−1ΛX. By the Binet–Cauchy Theorem (see
Chapter 2, end of Section 2.3),

det(A) = det(X−1) det(Λ) det(X)

=
1

det(X)
det(Λ) det(X)

= det(Λ) = λ1 . . . λn > 0 .

(iv) Consider the vector x ∈ R
n
∗ with zeros in the positions corre-

sponding to the rows which have been deleted. Then,

xTAx = yTBy

where B is the submatrix of A containing the rows and columns which
remain after deletion, and y is the vector consisting of the elements of
x which were not deleted. Since the expression on the left is positive,
the same is true of the expression on the right, for all vectors y except
the zero vector. Therefore B is positive definite.

(v) By the previous result the 2 × 2 submatrix consisting of rows and
columns r and s of A is positive definite, and its determinant is therefore
positive.

(vi) This follows from the previous result, since it shows that |aij |
cannot exceed the greater of aii and ajj .

(vii) This follows at once from the previous result.
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The converses of two of these results are also true:

(i) If all the eigenvalues of the symmetric matrix A ∈ R
n×n are

positive, then A is positive definite;
(ii) If the determinant of each leading principal submatrix of a matrix

A ∈ R
n×n is positive, then A is positive definite.

The proof of the second result is involved and will not be given here;1

see, however, Example 3.1 for the case of n = 2. The proof of the first
statement, on the other hand, is quite simple and proceeds as follows.

Since A ∈ R
n×n is symmetric, it has a complete set of orthonor-

mal eigenvectors v1, . . . ,vn in R
n
∗ , and the corresponding eigenvalues

λ1, . . . , λn are all real. Given any vector x ∈ R
n
∗ , it can be expressed as

x =
n∑
i=1

αivi

where αi ∈ R, i = 1, 2, . . . , n, and α2
1 + · · · + α2

n = xTx > 0. Since
Avi = λivi, i = 1, 2, . . . , n, it follows that

Ax =
n∑
i=1

αiλivi .

As vT
j vi = 0 for i �= j and vT

i vi = 1, we deduce that

xTAx =
n∑
i=1

λiα
2
i

≥
(

n
min
i=1

λi

) n∑
i=1

α2
i > 0 ,

since minni=1 λi > 0; therefore A is positive definite.
For a symmetric positive definite matrix A we can now obtain an LU

factorisation A = LU in which U = LT.

Theorem 3.2 Suppose that n ≥ 2 and A ∈ R
n×n
sym is a positive definite

matrix; then, there exists a lower triangular matrix L ∈ R
n×n such that

A = LLT .

This is known as the Cholesky factorisation2 of A.
1 For more details, see R.A. Horn and C.R. Johnson, Matrix Analysis, Cambridge
University Press, 1992, Theorem 7.2.5.

2 ‘André-Louis Cholesky (1875–1918) was a French military officer involved in
geodesy and surveying in Crete and North Africa just before World War I. He
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Proof Since A is symmetric and positive definite, all the leading principal
submatrices of A are positive definite, and hence by Theorem 2.2 the
usual LU factorisation exists, with

A = L(1)U (1) ,

L(1) ∈ R
n×n a unit lower triangular and U (1) ∈ R

n×n an upper trian-
gular matrix. In this factorisation the product of the leading principal
submatrices of L(1) and U (1) of order k is the leading principal subma-
trix of A of order k, 1 ≤ k ≤ n. Since the determinant of this submatrix
is positive and all the diagonal elements of L(1) are unity, it follows
that

u
(1)
11 u

(1)
22 . . . u

(1)
kk > 0 , k = 1, 2, . . . , n .

Thus all the diagonal elements of U (1) are positive. If we now define D

to be the diagonal matrix with elements dii =
√
u

(1)
ii , i = 1, 2, . . . , n, we

can write

A = L(1)U (1) = (L(1)D)(D−1U (1)) = LU ,

where now lii = uii =
√
u

(1)
ii . The symmetry of the matrix A shows that

LU = A = AT = UTLT ,

so that

U(LT)−1 = L−1UT .

In this equality the left-hand side is upper triangular, and the right-
hand side is lower triangular, and hence both sides must be diagonal.
Therefore, U = D∗LT, where D∗ is a diagonal matrix; but U and LT

have the same diagonal elements, so D∗ = I and U = LT.
The same argument shows that L and LT are unique, except for the

arbitrary choice of the signs of the square roots in the definition of the
diagonal matrix D. If we make the natural choice, taking all the square
roots to be positive, then the diagonal elements of L are positive, and
the factorisation is unique.

developed the method now named after him to compute solutions to the normal
equations for some least squares data fitting problems arising in geodesy. His work
was posthumously published on his behalf in 1924 by a fellow officer, Benoit, in
the Bulletin Géodésique.’ – Cleve Moler, NA-Digest, February 18, 1990, Volume
90, Issue 07, http://www.netlib.org/na-digest-html/90/v90n07.html
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In practice we construct the elements of L directly, rather than form-
ing L(1) and U (1) first. This is done in a similar way to the LU factori-
sation. Suppose that i ≤ j; we then require that

aij =
i∑
k=1

likljk , 1 ≤ i ≤ j ≤ n . (3.1)

Note that we have used the fact that (LT)kj = ljk; the sum only extends
up to k = i since L is lower triangular. The same equation will also hold
for i > j, since A is symmetric. For i = j, equation (3.1) gives

l11 = a
1/2
11 , lii =

{
aii −

i−1∑
k=1

l2ik

}1/2

, 1 < i ≤ n . (3.2)

As A is a positive definite matrix, a11 > 0 and therefore l11 is a positive
real number. Further, as we have seen in the proof of the preceding
theorem, lii > 0, i = 2, 3, . . . , n. We find similarly that

lji =
1
lii

{
aij −

i−1∑
k=1

likljk

}
, 1 ≤ i < j ≤ n . (3.3)

These equations now enable us to calculate the elements of L in succes-
sion. For each i ∈ {1, 2, . . . , n − 1}, we first calculate lii from (3.2), and
then calculate li+1 i, li+2 i, . . . , lni from (3.3). Finally, we compute lnn
using (3.2).

As, by hypothesis, the matrix A ∈ R
n×n
sym is positive definite, the re-

quired factorisation exists, so we can be sure that the divisor lii in (3.3),
and the expression in the curly brackets in (3.2) whose square root is
taken, will be positive. Thus, (3.2) implies that

l211 = a11 ,
i−1
max
k=1

l2ik ≤ aii , i = 2, 3, . . . , n .

The elements of the factor L cannot therefore grow very large, and no
pivoting is necessary.

The evaluation of lii from (3.2) requires i − 1 multiplications, i − 1
subtractions and one square root operation, a total of 2i− 1 operations.
The calculation of each lij from (3.3) also requires 2i − 1 operations.
The total number of operations required to construct L is therefore

n∑
i=1

n∑
j=i

(2i − 1) =
n∑
i=1

(2i − 1)(1 + n − i) = 1
6n(n + 1)(2n + 1) .
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For large n the number of operations required is approximately 1
3n

3,
which, as might be expected, is half the number given in Section 2.6 for
the LU factorisation of a nonsymmetric matrix.

3.3 Tridiagonal and band matrices

As we shall see in the final chapters, in the numerical solution of bound-
ary value problems for second-order differential equations one encounters
a particular kind of matrix whose elements are mostly zeros, except for
those along its main diagonal and the two adjacent diagonals. Matri-
ces of this kind are referred to as tridiagonal. In order to motivate the
definition of tridiagonal matrix stated in Definition 3.2 below, we begin
with an example which is discussed in more detail in Chapter 13.

Example 3.2 Consider the two-point boundary value problem

− d2y

dx2
+ r(x)y = f(x) , x ∈ (0, 1) ,

y(0) = 0 , y(1) = 0 .

where r and f are continuous functions of x defined on the interval [0, 1].

The numerical solution of the boundary value problem proceeds by se-
lecting an integer n ≥ 4, choosing a step size h = 1/n, and subdividing
the interval [0, 1] by the points xk = kh, k = 0, 1, . . . , n. The numerical
approximation to y(xk), the value of the analytical solution y at the
point x = xk, is denoted by Yk. The values Yk are obtained by solving
the set of linear equations

−Yk+1 − 2Yk + Yk−1

h2
+ r(xk)Yk = f(xk)

for k = 1, 2, . . . , n − 1, together with the boundary conditions

Y0 = 0 , Yn = 0 .

Equivalently,

akYk−1 + ckYk + bkYk+1 = dk , k = 1, 2, . . . , n − 1 ,

Y0 = 0 , Yn = 0 ,
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where

ak = bk = −1/h2, ck = 2/h2 + r(xk) , dk = f(xk) ,

for k = 1, 2, . . . , n − 1.
Clearly, for 1 < k < n−1, the kth equation in the linear system above

involves only three of the n − 1 unknowns: Yk−1, Yk and Yk+1. �
The example motivates the following definition of a tridiagonal (or

triple diagonal) matrix.

Definition 3.2 Suppose that n ≥ 3. A matrix T = (tij) ∈ R
n×n is said

to be tridiagonal if it has nonzero elements only on the main diagonal
and the two adjacent diagonals; i.e.,

tij = 0 if |i − j| > 1 , i, j ∈ {1, 2, . . . , n} .

Such matrices are also sometimes called triple diagonal.

It is easy to see that in the LU factorisation process of a tridiagonal
matrix T ∈ R

n×n, without row interchanges, the unit lower triangular
matrix L ∈ R

n×n and the upper triangular matrix U ∈ R
n×n each have

only two elements in each row. Writing T in the compact notation

T =




b1 c1

a2 b2 c2

a3 b3 c3

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

an bn




, (3.4)

the factorisation may be written T = LU where

L =




1
l2 1

l3 1
. . . . . . . . . . . . . . .

ln 1


 (3.5)

and

U =




u1 v1

u2 v2

u3 v3

. . . . . . . . . . . . . . .

un


 , (3.6)



3.3 Tridiagonal and band matrices 95

with the convention that the missing elements in these matrices are all
equal to zero. It is often convenient to define a1 = 0 and cn = 0.
Multiplying L and U shows that vj = cj , and that the elements lj and
uj can be calculated from

lj = aj/uj−1 , uj = bj − ljcj−1 , j = 2, 3, . . . , n , (3.7)

starting from u1 = b1.
Let us suppose that our aim is to solve the system of linear equations

Tx = r, where the matrix T ∈ R
n×n is tridiagonal and nonsingular, and

r ∈ R
n. Having calculated the elements of the matrices L and U in the

LU factorisation T = LU using (3.7), the forward and backsubstitution
are then also very simple. Letting y = Ux, the equation Ly = r gives

y1 = r1 , (3.8)

yj = rj − ljyj−1 , j = 2, 3, . . . , n , (3.9)

and finally from Ux = y we get

xn = yn/un , (3.10)

xj = (yj − vjxj+1)/uj , j = n − 1, n − 2, . . . , 1 . (3.11)

The LU factorisation of a tridiagonal matrix requires approximately
3n operations. The forward and backsubstitution together involve ap-
proximately 5n operations. Thus, the whole solution process requires
approximately 8n operations. The total amount of work is therefore
far less than for a full matrix, being of order n for large n, compared
with 2

3n
3 for a full matrix. The method we have described is a minor

variation on what is often known as the Thomas algorithm.1

So far we have assumed that pivoting was not necessary; clearly any
interchange of rows will destroy the tridiagonal structure of T . However,
it is easy to see that the only interchanges required will be between two
adjacent rows.

Theorem 3.3 Suppose that n ≥ 3 and T ∈ R
n×n is a tridiagonal matrix;

then, there exists a permutation matrix P ∈ R
n×n such that

PA = L(1)U (1) (3.12)
1 After Llewellyn H. Thomas, a distinguished physicist, who in the 1950s held po-
sitions at Columbia University and at IBM’s Watson Research Laboratory. He is
probably best known in connection with the Thomas–Fermi electron gas model.
The terminology ‘Thomas algorithm’ comes from David Young. Thomas, L.H.,
Elliptic Problems in Linear Difference Equations over a Network, Watson Sci.
Comput. Lab. Rept, Columbia University, New York, 1949. See NA-Digest V.96,
09, http://www.netlib.org/cgi-bin/mfs/02/96/v96n09.html
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where L(1) ∈ R
n×n is unit lower triangular with at most two nonzero

elements in each row, and U (1) ∈ R
n×n is upper triangular with at most

three nonzero elements in each row.

The proof of this theorem is left as an exercise (see Exercise 6). It
shows that the effect of pivoting is at worst to lead to an additional
superdiagonal in the upper triangular factor.

In an important class of problems it is also easy to show that pivoting
is unnecessary. We have shown this to be true for a symmetric positive
definite matrix, and we can now show that it is also true for a tridiagonal
matrix which is strictly diagonally dominant.

Definition 3.3 A matrix A ∈ R
n×n is said to be diagonally dominant

if

|aii| ≥
n∑
j=1
j 
=i

|aij | , i = 1, 2, . . . , n ;

A is said to be strictly diagonally dominant if strict inequality holds
for each i.

Theorem 3.4 Suppose that n ≥ 3, T ∈ R
n×n is tridiagonal, as in (3.4),

and

|bj | > |aj | + |cj | , j = 1, 2, . . . , n (3.13)

(with the convention a1 = 0, cn = 0); then T is nonsingular, and it can
be written, without pivoting, in the form T = LU where L ∈ R

n×n is
unit lower triangular and U ∈ R

n×n is upper triangular. The condition
(3.13) ensures that the matrix T is strictly diagonally dominant.

Proof We first show by induction that |uj | > |cj | for all j = 1, 2, . . . , n.
This inequality trivially holds for j = 1 since

|u1| = |b1| > |a1| + |c1| = |c1| .

Now let j ∈ {2, . . . , n} and adopt the inductive hypothesis:

Hypj−1 : |uk−1| > |ck−1| ∀ k ∈ {2, . . . , j} .

(As we have already seen, Hyp1 is true.) Then, from (3.7) we see that

|uj | ≥
∣∣∣∣ |bj | − |aj |

∣∣∣∣ cj−1

uj−1

∣∣∣∣
∣∣∣∣

≥ | |bj | − |aj | | > |cj | (3.14)
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by the condition of strict diagonal dominance (3.13), which then shows
that Hypj holds. That completes the inductive step.

We have thus proved that |uj | > |cj | for all j = 1, 2, . . . , n. In par-
ticular, we deduce that uj �= 0 for all j ∈ {1, 2, . . . , n}; hence the LU
factorisation T = LU defined by (3.7) exists. Further,

det(T ) = det(L) det(U) = det(U) = u1u2 . . . un �= 0 ,

so T is nonsingular.
The formula (3.7) and the inequalities |uj | > |cj |, j = 1, 2, . . . , n, now

imply that

|uj | ≤ |bj | + |lj | |cj−1|
= |bj | + |ajcj−1|/|uj−1|
≤ |bj | + |aj | , j = 1, 2, . . . , n , (3.15)

so the elements uj cannot grow large, and rounding errors are kept under
control without pivoting.

It is easy to see that the same result holds under the weaker assump-
tion that the matrix is diagonally dominant, but not necessarily strictly
diagonally dominant, provided that we also require that all the elements
cj , j = 1, 2, . . . , n − 1, are nonzero (see Exercise 5).

Note also that the matrix constructed in Example 3.2 satisfies this
condition, provided that the function r is nonnegative; this often holds
in practical boundary value problems.

If the matrix T ∈ R
n×n is symmetric and positive definite, as well as

tridiagonal, it can be factorised in the form T = LLT, where L ∈ R
n×n is

lower triangular with nonzero elements only on and immediately below
the diagonal. If we use the notation di = lii, ei = li i−1 we easily find
from (3.2) and (3.3) that the elements can be calculated in succession
from the following formulae:

d1 = b
1/2
1 ,

ei = ci−1/di−1 , di =
(
bi − e2

i

)1/2
, i = 2, 3, . . . , n .

This calculation involves about 4n operations. Including also the work
required by the forward and backsubstitution stages, the complete so-
lution of Tx = b will be found to involve about 10n operations. For
the tridiagonal matrix the Cholesky factorisation method thus requires
more work for the complete solution than the Thomas algorithm; in this
case there is no particular advantage in exploiting the symmetry of the
matrix in this way.
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


∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗




Fig. 3.1. The asterisks indicate the 36 nonzero elements in this 10 × 10
Band(1,2) matrix.

More generally, a system of equations may often involve a matrix of
band type.

Definition 3.4 B ∈ R
n×n is a band matrix if there exist nonnegative

integers p < n and q < n such that bij = 0 for all i, j ∈ {1, 2, . . . , n}
such that p < i − j or q < j − i. The band is of width p + q + 1, with
p elements to the left of the diagonal and q elements to the right of the
diagonal, in each row. Such a matrix is said to be Band(p, q).

Thus, for example, a tridiagonal matrix is Band(1,1), and an n × n

lower triangular matrix is Band(n − 1,0).
An example of a Band(1,2) matrix A ∈ R

10×10 is shown in Figure 3.1,
where each nonzero element in the matrix is identified by an asterisk.
In addition to its main diagonal, the matrix has nonzero elements on its
lower subdiagonal and two of its superdiagonals.

It is easy to see that, provided that no interchanges are necessary,
such a band matrix can be written in the form B = LU , where L is
Band(p,0) and U is Band(0,q) (see Exercise 7). It is also fairly simple to
count the operations required in this calculation; the result is approx-
imately proportional to np(p + 2q) when n is moderately large. The
most common situation has q = p, and then the number of operations
is approximately proportional to np2. As in the tridiagonal case, this is
much smaller than n3 when p and q are fairly small compared with n.

3.4 Monotone matrices

If a positive real number a is increased by ε > 0 to a + ε, then its
reciprocal a−1 decreases to (a + ε)−1. It is not usually true, however,
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that if we increase some or all of the elements of a nonsingular matrix
A ∈ R

n×n, then the elements of the inverse A−1 ∈ R
n×n will decrease.

This useful property holds for the class of monotone matrices defined
below.

The discussion in this section is not related to Gaussian elimination
and LU factorisation, but it is of relevance in the iterative solution of
systems of linear equations with monotone matrices which arise in the
course of numerical approximation of boundary value problems for cer-
tain ordinary and partial differential equations.

Definition 3.5 The nonsingular matrix A ∈ R
n×n is said to be mono-

tone if all the elements of the inverse A−1 are nonnegative.

Example 3.3 Suppose that a and d are positive real numbers, and b and
c are nonnegative real numbers such that ad > bc. Then,

A =
(

a −b

−c d

)

is a monotone matrix. This is easily seen by considering the inverse of
the matrix A,

A−1 =
1

ad − bc

(
d b

c a

)
,

and noting that all elements of A−1 are nonnegative.

Next we introduce the concept of ordering in R
n and R

n×n.

Definition 3.6 For vectors x and y in R
n we use the notation

x � y

to mean that

xi ≥ yi , i = 1, 2, . . . , n .

In the same way, for matrices A and B in R
n×n we write

A � B

to mean that

aij ≥ bij , i, j = 1, 2, . . . , n .

The sign � is read ‘succeeds or is equal to’ or, simply, ‘is greater than
or equal to’.
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Note that, given two arbitrary matrices A and B in R
n×n, in general

none of A � B, A = B and B � A will be true. Therefore the relation
� is a partial, rather than a total, ordering on R

n×n; the same is true
of the ordering � on R

n.

Theorem 3.5 (i) Suppose that the nonsingular matrix A ∈ R
n×n is

monotone, b, c ∈ R
n, and the vectors x and y in R

n are the solutions
of

Ax = b , Ay = c ,

respectively. If b � c, then x � y.

(ii) Suppose that A and B are nonsingular matrices in R
n×n and that

both are monotone. If A � B, then B−1 � A−1.

Proof (i) Since the elements of A−1 are nonnegative and

x− y = A−1(b− c) ,

the result follows from the fact that all elements of the vector A−1(b−c)
appearing on the right-hand side of this equality are nonnegative.

(ii) Since A � B and all the elements of B−1 are nonnegative, it
follows that

B−1A � B−1B = I .

In the same way, since all the elements of A−1 are nonnegative, it follows
that

B−1 = B−1AA−1 � A−1,

as required.

The following theorem will be useful in Chapter 13.

Theorem 3.6 Suppose that n ≥ 3 and T ∈ R
n×n is a tridiagonal

matrix of the form (3.4) with the properties

ai < 0 , i = 2, 3, . . . , n , ci < 0 , i = 1, 2, . . . , n − 1 ,

and

ai + bi + ci ≥ 0 , i = 1, 2, . . . , n ,

where we have followed the convention that a1 = 0, cn = 0; then, the
matrix T is monotone.
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Proof Let k ∈ {1, 2, . . . , n}. Column k of the inverse T−1 is the solution
of the linear system Tc(k) = e(k), where e(k) is column k of the identity
matrix of size n, having a single nonzero element, 1, in row k. By
applying the Thomas algorithm to this linear system, it is easy to deduce
by induction from (3.7) that lj ≤ 0, uj ≥ 0 and vj ≤ 0 for all j; the
argument is very similar to the proof of Theorem 3.4. It then follows
from (3.8) and (3.9) that, in the notation of the Thomas algorithm, the
vectors y and x have nonnegative elements. Hence column k of the
inverse T−1 has nonnegative elements. Since the same is true for each
k ∈ {1, 2, . . . , n}, it follows that T is monotone.

3.5 Notes

Symmetric systems of linear algebraic equations arise in the numerical
solution of self-adjoint boundary value problems for differential equa-
tions with real-valued coefficients.

For further details on the Cholesky factorisation, the reader may con-
sult any of the books listed in the Notes at the end of Chapter 2, partic-
ularly Chapter 10 of N.J. Higham, Accuracy and Stability of Numerical
Algorithms, SIAM, Philadelphia, 1996.

Classical iterative methods for the solution of systems of linear equa-
tions with monotone matrices are discussed, for example, in

➧ Richard S. Varga, Matrix Iterative Analysis, Prentice–Hall, Engle-
wood Cliffs, NJ, 1962.

A more recent reference on iterative algorithms for linear systems is

➧ Owe Axelson, Iterative Solution Methods, Cambridge University
Press, Cambridge, 1996.

In particular, Chapter 6 of Axelson’s book considers the relevance of
monotone matrices in the context of iterative solution of systems of
linear equations.

Theorem 3.6 is a slight variation on the following general result.

Theorem 3.7 A sufficient condition for A ∈ R
n×n to be a monotone

matrix is that A is an M-matrix, that is, (a) aij ≤ 0 for all i, j ∈
{1, 2, . . . , n} such that i �= j, and (b) there exists a vector g ∈ R

n with
positive elements such that all elements of Ag ∈ R

n are positive.
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Exercises

3.1 Find the Cholesky factorisation of the matrix

A =


 4 6 2

6 10 3
2 3 5


 .

3.2 Use the method of Cholesky factorisation to solve the system of
equations

x1 − 2x2 + 2x3 = 4 ,

−2x1 + 5x2 − 3x3 = −7 ,

2x1 − 3x2 + 6x3 = 10 .

3.3 Let n ≥ 3. The n × n tridiagonal matrix T has the diagonal
elements

Tii = 2 , i = 1, 2, . . . , n ,

and the off-diagonal elements

Ti i+1 = Ti+1 i = −1 , i = 1, 2, . . . , n − 1 .

In the factorisation T = LU , where L ∈ R
n×n is unit lower

triangular and U ∈ R
n×n is upper triangular, show that

Li+1 i = −i/(i + 1) , i = 1, 2, . . . , n ,

and find expressions for the elements of U . What is the deter-
minant of T?

3.4 Let n ≥ 3 and 1 ≤ k ≤ n. Define the vector v(k) ∈ R
n with

elements given by

v
(k)
i =

{
i(n + 1 − k) , i = 1, . . . , k ,

k(n + 1 − i) , i = k + 1, . . . , n .

Evaluate Mkj , the inner product of the vector v(k) with column j

of the matrix T defined in Exercise 3. (The inner product 〈v,w〉
of two vectors v and w in R

n is defined as the real number
vTw.) Hence give expressions for the elements of the inverse
matrix T−1, and verify that this inverse is symmetric. Find the
∞-norm of the inverse, ‖T−1‖∞, and show that the condition
number of T is

κ∞(T ) =
1
2
(n + 1)2 , n odd .

What is the condition number κ∞(T ) when n is even?
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3.5 Given that n ≥ 3, in the notation of Theorem 3.4 suppose that

|bj | ≥ |aj | + |cj | , j = 1, 2, . . . , n ,

and

|cj | > 0 , j = 1, 2, . . . , n − 1 ,

with the convention that a1 = 0 and cn = 0. Show that the
factorisation T = LU exists without pivoting, and can be con-
structed by the Thomas algorithm. Give an example of a matrix
T which satisfies these conditions, except that ck = 0 for some
k ∈ {1, 2, . . . , n − 1} and such that T is singular and cannot be
written in the form T = LU without pivoting.

3.6 Let n ≥ 3 and suppose that the matrix T ∈ R
n×n is tridiagonal.

Show that there exists a permutation matrix P ∈ R
n×n such

that

PA = L(1)U (1)

where L(1) ∈ R
n×n is unit lower triangular with at most two

nonzero elements in each row, and U (1) ∈ R
n×n is upper trian-

gular with at most three nonzero elements in each row.
3.7 Suppose that the matrix B is Band(p,q), and that there exists

a factorisation B = LU without row interchanges. Show that L

is Band(p,0) and U is Band(0,q).
3.8 Suppose that n ≥ 4, that the matrix A ∈ R

n×n is Band(3,3),
and has the LU factorisation A = LU , so that L ∈ R

n×n is
Band(3,0) and U ∈ R

n×n is Band(0,3). Suppose also that
ai+2,i = 0, ai,i+2 = 0 for i = 1, 2, . . . , n − 2. By considering
u24 and l42, or otherwise, show that in general the elements
li+2,i and ui,i+2 are not zero.
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Simultaneous nonlinear equations

4.1 Introduction

In Chapter 1 we discussed iterative methods for the solution of a single
nonlinear equation of the form f(x) = 0 where f is a continuous real-
valued function of a single real variable. In Chapters 2 and 3, on the
other hand, we were concerned with direct (as opposed to iterative)
methods for systems of linear equations. The purpose of the present
chapter is to extend the techniques developed in Chapter 1 to systems of
simultaneous nonlinear equations for functions of several real variables.
We shall concentrate on two methods: the generalisation of simple itera-
tion, usually referred to as simultaneous iteration, and Newton’s method.

Given that x = (x1, . . . , xn)T ∈ R
n, as in Chapters 2 and 3 we denote

by ‖x‖∞ the ∞-norm of x defined by

‖x‖∞ =
n

max
i=1

|xi| .

Throughout the chapter, R
n will be thought of as a linear space equipped

with the ∞-norm; with only minor alterations all of our results can be
restated in the p-norm with p ∈ [1,∞) on replacing ‖ · ‖∞ by ‖ · ‖p
throughout. We begin with some basic definitions which involve the
concept of open ball defined in Section 2.7.

Let ξ ∈ R
n; the open ball in R

n (with respect to the ∞-norm) of
radius ε > 0 and centre ξ is defined as the set

Bε(ξ) = {x ∈ R
n: ‖x− ξ‖∞ < ε} .

A set D ⊂ R
n is said to be an open set in R

n if for every ξ ∈ D there
exists ε = ε(ξ) > 0 such that Bε(ξ) ⊂ D (see Figure 4.1). For example,
any open ball in R

n is an open set in R
n. Given ξ ∈ R

n, any open set

104
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Bε(ξ)

D

o

ξ

Fig. 4.1. Open set D: for each ξ ∈ D there exists ε = ε(ξ) such that the open
ball Bε(ξ) of radius ε and centre ξ is contained in D.

N(ξ) ⊂ R
n containing ξ will be called a neighbourhood of ξ; thus,

any open set in R
n is a neighbourhood of each of its elements.

A set D ⊂ R
n is said to be a closed set in R

n if its complement
R
n \D is an open set in R

n. For example, the closed ball of radius ε > 0
and centre ξ, defined by

B̄ε(ξ) = {x ∈ R
n: ‖x− ξ‖∞ ≤ ε} ,

is a closed set in R
n.

A sequence (x(k)) ⊂ R
n is called a Cauchy sequence in R

n if for
any ε > 0 there exists a positive integer k0 = k0(ε) such that

‖x(k) − x(m)‖∞ < ε ∀ k,m ≥ k0 .

We shall make use of the fact that R
n is complete: that is, if (x(k))

is a Cauchy sequence in R
n, then there exists ξ in R

n such that (x(k))
converges to ξ; i.e.,

lim
k→∞

‖x(k) − ξ‖∞ = 0 . (4.1)

For the sake of brevity, we shall write limk→∞ x(k) = ξ instead of (4.1).

Lemma 4.1 Suppose that D is a nonempty closed subset of R
n and

(x(k)) ⊂ D is a Cauchy sequence in R
n. Then, limk→∞ x(k) = ξ exists

and ξ ∈ D.

Proof As (x(k)) is a Cauchy sequence in R
n, there exists ξ ∈ R

n such
that limk→∞ x(k) = ξ. It remains to prove that ξ ∈ D. Suppose,
otherwise, that ξ belongs to the open set R

n \ D. Then, there exists
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ε > 0 such that Bε(ξ) ⊂ R
n \ D. As (x(k)) ⊂ D, no member of the

sequence (x(k)) can enter Bε(ξ). This, however, contradicts the fact
that (x(k)) converges to ξ. The contradiction implies that ξ ∈ D.

Suppose that D is a nonempty subset of R
n and f : D(⊂ R

n) → R
n

is a function defined on D. Given that ξ ∈ D, we shall say that f is
continuous at ξ if for every ε > 0 there exists δ = δ(ε) > 0 such that,
for every x ∈ Bδ(ξ) ∩ D,

‖f(x) − f(ξ)‖∞ < ε .

When a function f , defined on the set D, is continuous at each point of
D, it is said to be a continuous function on D.

Lemma 4.2 Let D be a nonempty subset of R
n and f : D(⊂ R

n) → R
n

a function, defined and continuous on D. If (x(k)) ⊂ D converges in R
n

to ξ ∈ D, then limk→∞ f(x(k)) = f(ξ).

Proof Due to the continuity of f at ξ ∈ D, given ε > 0, there exists
δ = δ(ε) > 0 such that if ‖x− ξ‖∞ < δ for some x ∈ D, then

‖f(x) − f(ξ)‖∞ < ε . (4.2)

Further, as (x(k)) converges to ξ, there exists k0 = k0(δ) = k0(δ(ε)) such
that

‖x(k) − ξ‖∞ < δ ∀ k ≥ k0 .

Hence, taking x = x(k) in (4.2), we deduce that for each ε > 0 there
exists k0 such that

‖f(x(k)) − f(ξ)‖∞ < ε ∀ k ≥ k0 ,

which means that limk→∞ f(x(k)) = f(ξ).

After this brief preparation, we are ready to embark on the develop-
ment of numerical algorithms for the solution of systems of simultaneous
nonlinear equations.

4.2 Simultaneous iteration

Let D be a nonempty closed subset of R
n and f : D(⊂ R

n) → R
n

a continuous function defined on D. We shall be concerned with the
problem of finding ξ ∈ D such that f(ξ) = 0. If such ξ exists, it is
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0
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x

Fig. 4.2. Graphs of the curves x2
1 + x2

2 − 1 = 0 and 5x2
1 + 21x2

2 − 9 = 0.

called a solution to the equation f(x) = 0 (in D). When written in
componentwise form, f(x) = 0 becomes

fi(x1, . . . , xn) = 0 , i = 1, . . . , n ,

a system of n simultaneous nonlinear equations for n unknowns, where
f1, . . . , fn are the components of f .

Example 4.1 Consider the system of two simultaneous nonlinear equa-
tions in two unknowns, x1 and x2, defined by

x2
1 + x2

2 − 1 = 0 ,

5x2
1 + 21x2

2 − 9 = 0 .

Here x = (x1, x2)T and f = (f1, f2)T with

f1(x1, x2) = x2
1 + x2

2 − 1 ,

f2(x1, x2) = 5x2
1 + 21x2

2 − 9 .

The equation f(x) = 0 has four solutions:

ξ1 = (−
√

3/2, 1/2)T , ξ2 = (
√

3/2, 1/2)T ,

ξ3 = (−
√

3/2,−1/2)T , ξ4 = (
√

3/2,−1/2)T .

The curves f1(x1, x2) = 0 and f2(x1, x2) = 0 are depicted in Figure 4.2.
The four solutions correspond to the four points of intersection of the
two curves in the figure.
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Example 4.2 Let us suppose that A ∈ R
n×n and b ∈ R

n. On letting
f(x) = b − Ax we deduce that the problem of solving the system of
simultaneous linear equations considered in Chapters 2 and 3 can be
restated in the form: find x ∈ R

n such that f(x) = 0.

Let us assume that we have transformed the equation f(x) = 0 into an
equivalent form g(x) = x, where g: R

n → R
n is a continuous function,

defined on the closed subset D ⊂ R
n, such that g(D) ⊂ D. For example,

one can choose g(x) = x − αf(x), with α ∈ R a suitable parameter.
By ‘equivalent’ we mean that ξ ∈ D satisfies f(ξ) = 0 if, and only if,
g(ξ) = ξ. Any ξ ∈ D such that g(ξ) = ξ is called a fixed point of the
function g in D. Thus the problem of finding a solution ξ ∈ D to the
equation f(x) = 0 has been converted into one of finding a fixed point
in D of the function g. We embark on the latter task by considering the
natural extension to R

n of the simple iteration discussed in Section 1.2
for the solution of the scalar nonlinear equation g(x) = x.

Definition 4.1 Suppose that g: R
n → R

n is a function, defined and
continuous on a closed subset D of R

n, such that g(D) ⊂ D. Given that
x0 ∈ D, the recursion defined by

x(k+1) = g(x(k)), k = 0, 1, 2, . . . , (4.3)

is called a simultaneous iteration. For n = 1 the recursion (4.3) is
just the simple iteration considered in (1.3).

Note that here we use the superscript k as the sequence index; follow-
ing the convention adopted in Chapters 2 and 3, we reserve subscripts
for labelling the entries of vectors. Thus x

(k)
i is entry i of the vector

x(k), the kth member of the sequence (x(k)). The motivation behind
the definition of the simultaneous iteration (4.3) is, of course, our hope
that, under suitable conditions on g and D, the sequence (x(k)) will
converge to a fixed point ξ of g.

Two remarks are in order at this point. First, it is easy to show that if
a sequence of vectors (x(k)) converges in R

n to ξ in the norm ‖·‖∞, then
it also converges to this same limit in the norm ‖ · ‖p for any p ∈ [1,∞).
To see this, note that

‖w‖∞ ≤ ‖w‖p ≤ n1/p‖w‖∞ ∀w ∈ R
n , (4.4)
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for 1 ≤ p < ∞, and take w = x(k) − ξ to deduce that, as k → ∞,
convergence in the ∞-norm implies convergence in the p-norm for any
p ∈ [1,∞), and vice versa. Thus, in this sense, the choice of norm on
R
n is irrelevant. Second, the assumption that D is a closed set is crucial

in our discussion. If D is not closed, g: D → D need not have a fixed
point in D, even if x(k) ∈ D for all k ≥ 0 and (x(k)) converges in R

n.
We verify this claim through a simple example.

Example 4.3 Suppose that D is the open unit disc in R
2 in the ∞-norm,

which is just the square defined by −1 < x1 < 1, −1 < x2 < 1. Consider
the simultaneous iteration defined by (4.3), where x(0) = 0 ∈ D, and

g(x) = 1
2 (x + u) , u = (1, 1)T .

If ‖x‖∞ < 1 it is easy to see that ‖g(x)‖∞ < 1; hence, starting the
iteration x(k+1) = g(x(k)) from x(0) = 0, it follows that x(k) ∈ D for all
k ≥ 0. The definition of g implies at once that

x(k+1) − u = 1
2 (x(k) − u) ,

and therefore

‖x(k+1) −u‖∞ = 1
2‖x

(k) −u‖∞ = · · · =
(

1
2

)k+1 ‖x(0) −u‖∞ =
(

1
2

)k+1
,

from which it is obvious that the sequence (x(k)) converges in R
2 to the

limit u. However, u /∈ D, since u lies on the unit circle in the ∞-norm
that represents the boundary of the open set D. �

Up to now we have been assuming that the function g: R
n → R

n is
defined and continuous on a closed subset D of R

n. In order to ensure
that g has a (unique) fixed point in D, we strengthen our hypotheses on
the function g.

Definition 4.2 Suppose that g: R
n → R

n is defined on a closed subset
D of R

n. If there exists a positive constant L such that,

‖g(x) − g(y)‖∞ ≤ L ‖x− y‖∞ (4.5)

for all x and y in D, then we say that g satisfies a Lipschitz condition
on D in the ∞-norm. The number L is called a Lipschitz constant
for g in the ∞-norm. In particular, if L ∈ (0, 1), then g is said to be a
contraction on D in the ∞-norm.
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Any function g that satisfies a Lipschitz condition on a set D is con-
tinuous on D. For let x0 ∈ D and ε > 0; then, on defining δ = ε/L, we
deduce from (4.5) that if ‖x− x0‖∞ < δ for some x ∈ D, then

‖g(x) − g(x0)‖∞ ≤ L ‖x− x0‖∞ < ε .

It follows from (4.4) that if g satisfies a Lipschitz condition on D in
the ∞-norm then it also does so in the p-norm for any p ∈ [1,∞), and
vice versa. However, in general, the size of the constant L may depend
on the choice of norm. Specifically, if g is a contraction on a set D in the
∞-norm (i.e., (4.5) holds with L < 1), then g need not be a contraction
in the p-norm, unless L < n−1/p. (See Exercise 1.) Conversely, if g is a
contraction on D in the p-norm for some p ∈ [1,∞), it does not follow
that g is a contraction on D in the ∞-norm.

For example, suppose that g: R
2 → R

2 is the linear function defined
by g(x) = Ax, where A is the 2 × 2 matrix

A =
(

3/4 1/3
0 3/4

)
.

This function g satisfies a Lipschitz condition on R
2 in ‖ · ‖p for any

p ∈ [1,∞], and if L is a Lipschitz constant for g in the p-norm, then
L ≥ ‖A‖p, in the subordinate matrix norm. It is easy to see that ‖A‖1 =
‖A‖∞ = 13/12, and a small calculation gives ‖A‖2 = 0.935 to three
decimal digits. Hence the function g is a contraction in the 2-norm, but
not in the 1- or ∞-norm.

Our next result is a direct generalisation of Theorem 1.3 formulated
in Chapter 1.

Theorem 4.1 (Contraction Mapping Theorem) Suppose that D

is a closed subset of R
n, g: R

n → R
n is defined on D, and g(D) ⊂ D.

Suppose further that g is a contraction on D in the ∞-norm. Then, g
has a unique fixed point ξ in D, and the sequence (x(k)) defined by (4.3)
converges to ξ for any starting value x(0) ∈ D.

Proof Assuming that g has a fixed point ξ in D, the uniqueness of the
fixed point is easy to show: for suppose that η is also a fixed point of g
in D. Then, by (4.5),

‖ξ − η‖∞ = ‖g(ξ) − g(η)‖∞ ≤ L‖ξ − η‖∞ ,
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i.e., (1 − L)‖ξ − η‖∞ ≤ 0. Since L ∈ (0, 1), and ‖ · ‖∞ is a norm, it
follows that ξ − η = 0, and hence ξ = η. Consequently, if g has a fixed
point in D, then this is the unique fixed point of g in D.

Now, still assuming that g possesses a fixed point ξ ∈ D, we shall
show that the sequence (x(k)) defined by (4.3) converges to ξ for any
starting value x(0) ∈ D. By repeating the argument from Chapter 1
which led to (1.10), with the absolute value sign | · | replaced by ‖ · ‖∞
throughout, we find that

‖x(k) − ξ‖∞ ≤ Lk
1

1 − L
‖x(1) − x(0)‖∞ .

As L ∈ (0, 1), we deduce that limk→∞ Lk = 0, and hence,

lim
k→∞

‖x(k) − ξ‖∞ = 0 ,

showing that the sequence (x(k)) defined by (4.3) converges to ξ for any
starting value x(0) ∈ D. In particular, if ε > 0, then letting

k0 = k0(ε) =
[
ln ‖x1 − x0 ‖∞ − ln(ε(1 − L))

ln(1/L)

]
+ 1 , (4.6)

we find that

Lk
1

1 − L
‖x(1) − x(0)‖∞ ≤ ε

for all k ≥ k0(ε), and therefore

‖x(k) − ξ‖∞ ≤ ε , (4.7)

for all k ≥ k0(ε), as in Chapter 1. A brief comment on the notation: in
(4.6), [x] denotes the integer part of the real number x; i.e., [x] is the
largest integer such that [x] ≤ x – just as in Theorem 1.4.

In order to complete the proof of the theorem, it remains to show
the existence of a fixed point ξ ∈ D for g. In contrast with the proof
of existence of a fixed point for a real-valued function of a single real
variable presented in Chapter 1, here we cannot rely on the Intermediate
Value Theorem (unless, of course, n = 1), so we shall develop a different
argument. The essence of this will be to show that (x(k)) ⊂ D is a
Cauchy sequence in R

n; for then we can apply Lemmas 4.1 and 4.2 to
deduce that the sequence converges to a fixed point ξ of the function g.

Let us begin by noting that since g(D) ⊂ D, if x(0) belongs to D, then
x(k) = g(x(k−1)) ∈ D for all k ≥ 1. Further, since g is a contraction on
D in the ∞-norm, we have that

‖x(k) − x(k−1)‖∞ = ‖g(x(k−1)) − g(x(k−2))‖∞ ≤ L‖x(k−1) − x(k−2)‖∞
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for all k ≥ 2. We then deduce by induction that

‖x(k) − x(k−1)‖∞ ≤ Lk−1‖x(1) − x(0)‖∞ , k ≥ 1 . (4.8)

Suppose that m and k are positive integers and m ≥ k + 1. Then, by
repeated application of the triangle inequality in the ∞-norm and using
(4.8), we have that

‖x(m) − x(k)‖∞ = ‖(x(m) − x(m−1)) + · · · + (x(k+1) − x(k))‖∞
≤ ‖x(m) − x(m−1)‖∞ + · · · + ‖x(k+1) − x(k)‖∞
≤ (Lm−1 + · · · + Lk)‖x(1) − x(0)‖∞
= Lk(Lm−k−1 + · · · + 1)‖x(1) − x0)‖∞

≤ Lk
1

1 − L
‖x(1) − x(0)‖∞ , (4.9)

where, in the transition to the last line, we made use of the fact that the
geometric series 1 + L + L2 + · · ·, with L ∈ (0, 1), sums to 1/(1 − L).

As limk→∞ Lk = 0, it follows from (4.9) that (x(k)) is a Cauchy se-
quence in R

n; that is, for each ε > 0 there exists k0 = k0(ε) (defined by
(4.6) above) such that

‖x(m) − x(k)‖∞ < ε ∀m, k ≥ k0 = k0(ε) . (4.10)

Any Cauchy sequence in R
n is convergent in R

n; consequently, there
exists ξ ∈ R

n such that ξ = limk→∞ x(k). Further, since g satisfies
a Lipschitz condition on D, the discussion in the paragraph following
Definition 4.2 shows that g is continuous on D. Hence, by Lemma 4.2,

ξ = lim
k→∞

x(k+1) = lim
k→∞

g(x(k)) = g

(
lim
k→∞

x(k)

)
= g(ξ) ,

which proves that ξ is a fixed point of g.
It remains to show that ξ ∈ D. This follows from Lemma 4.1 since

(x(k)) ⊂ D, ξ = limk→∞ x(k) and D is closed.

As a byproduct of the proof, we deduce from (4.7) that, given a posi-
tive tolerance ε, one can compute an approximation x(k) to the unknown
solution ξ using (4.3) in no more than k0 = k0(ε) iterations so that the
approximation error ξ − x(k), measured in the ∞-norm, is less than ε;
the integer k0(ε) is defined by (4.6).

The next theorem relates the constant L from the Lipschitz condition
(4.5) to the partial derivatives of g, giving a more practically useful
sufficient condition for convergence.
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Definition 4.3 Let g = (g1, . . . , gn)T: R
n → R

n be a function defined
and continuous in an (open) neighbourhood N(ξ) of ξ ∈ R

n. Suppose
further that the first partial derivatives ∂gi

∂xj
, j = 1, . . . , n, of gi exist at

ξ for i = 1, . . . , n. The Jacobian matrix Jg(ξ) of g at ξ is the n × n

matrix with elements

Jg(ξ)ij =
∂gi
∂xj

(ξ) , i, j = 1, . . . , n .

Theorem 4.2 Suppose that g = (g1, . . . , gn)T: R
n → R

n is defined
and continuous on a closed set D ⊂ R

n. Let ξ ∈ D be a fixed point of
g, and suppose that the first partial derivatives ∂gi

∂xj
, j = 1, . . . , n, of gi,

i = 1, . . . , n, are defined and continuous in some (open) neighbourhood
N(ξ) ⊂ D of ξ, with

‖Jg(ξ)‖∞ < 1 .

Then, there exists ε > 0 such that g(B̄ε(ξ)) ⊂ B̄ε(ξ), and the sequence
defined by (4.3) converges to ξ for all x(0) ∈ B̄ε(ξ).

Proof The proof is a natural extension of that of Theorem 1.5. We
write K = ‖Jg(ξ)‖∞. Since the partial derivatives ∂gi

∂xj
, i, j = 1, . . . , n,

are continuous in the neighbourhood N(ξ) of ξ, we can find a closed ball
B̄ε(ξ) ⊂ N(ξ) ⊂ D of radius ε and centre ξ such that

‖Jg(z)‖∞ ≤ 1
2 (K + 1) < 1 ∀z ∈ B̄ε(ξ) . (4.11)

Now, suppose that x and y are both in B̄ε(ξ) and, for i ∈ {1, . . . , n}
fixed, define the function t �→ ϕi(t) of the single variable t ∈ [0, 1] by

ϕi(t) = gi(tx + (1 − t)y) ;

thus, ϕi(0) = gi(y) and ϕi(1) = gi(x). The function t �→ ϕi(t) has a
continuous derivative in t on the interval [0, 1]; thus, by the Mean Value
Theorem (Theorem A.3), there exists η ∈ (0, 1) such that

gi(x) − gi(y) = ϕi(1) − ϕi(0) = ϕ′
i(η)(1 − 0) = ϕ′

i(η) .

This means that

gi(x) − gi(y) =
n∑
j=1

(xj − yj)
∂gi
∂xj

(ηx + (1 − η)y) (4.12)
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for i = 1, . . . , n. Now |xj − yj | ≤ ‖x−y‖∞ for all j ∈ {1, . . . , n}, and so
(4.12) gives

|gi(x) − gi(y)| ≤ ‖x− y‖∞
n∑
j=1

∣∣∣∣ ∂gi∂xj
(ηx + (1 − η)y)

∣∣∣∣
≤ ‖x− y‖∞ ‖Jg(ηx + (1 − η)y)‖∞ ,

for all i = 1, . . . , n. Consequently, for any x,y ∈ B̄ε(ξ),

‖g(x) − g(y)‖∞ ≤ max
t∈[0,1]

‖Jg(tx + (1 − t)y)‖∞‖x− y‖∞

≤ 1
2 (1 + K)‖x− y‖∞ , (4.13)

due to (4.11), given that tx+(1− t)y ∈ B̄ε(ξ) for all t ∈ [0, 1]. It follows
that g satisfies a Lipschitz condition (4.5), in the ∞-norm, on the closed
ball B̄ε(ξ) with L = 1

2 (1 + K) < 1. Furthermore, on selecting y = ξ in
(4.13) we get that

‖g(x) − ξ‖∞ = ‖g(x) − g(ξ)‖∞ < ‖x− ξ‖∞ ≤ ε

for all x ∈ B̄ε(ξ). Hence, g(B̄ε(ξ)) ⊂ B̄ε(ξ). The convergence of the
iteration (4.3) to ξ, for an arbitrary starting value x(0) ∈ B̄ε(ξ), now
follows from Theorem 4.1.

We close this section with an example which illustrates the application
of the method of simultaneous iteration to the solution of a system of
nonlinear equations.

Example 4.4 Let us consider, as in Example 4.1, the system of two
simultaneous nonlinear equations in the unknowns x1 and x2, defined by

x2
1 + x2

2 − 1 = 0 ,

5x2
1 + 21x2

2 − 9 = 0 .

Here x = (x1, x2)T and f = (f1, f2)T with

f1(x1, x2) = x2
1 + x2

2 − 1 ,

f2(x1, x2) = 5x2
1 + 21x2

2 − 9 .

Let us suppose that we need to find the solution of the system f(x) = 0
in the first quadrant of the (x1, x2)-coordinate system.

Of course, the example is a little artificial, since we already know from
Example 4.1 that ξ2 = (

√
3/2, 1/2)T is the required solution. In what

follows, however, we proceed as if we knew nothing about the location
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of ξ2. Our aim here is to illustrate the construction of the function g

from f and the verification of the hypotheses of Theorem 4.1.
Let us rewrite the two equations as

x1 =
(
1 − x2

2

)1/2
, x2 =

1√
21

(
9 − 5x2

1

)1/2
,

and define g1(x1, x2) and g2(x1, x2) as the right-hand sides of these,
respectively. We consider the simultaneous iteration

x(k+1) = g(x(k)) , k = 0, 1, 2, . . . , (4.14)

with suitably chosen x(0) and g = (g1, g2)T.
Our first task is to find a closed subset D of R

2 containing the required
solution, such that g satisfies the hypotheses of Theorem 4.1 on D. In
order to ensure that x �→ g(x) is real-valued and continuous, and that
the partial derivatives of g1 and g2 are continuous at x = (x1, x2)T ∈ R

2,
we demand that |x2| < 1 and |x1| < 3/(

√
5). In fact, since we are looking

for a solution in the first quadrant, it is natural to suppose that x1 ≥ 0,
x2 ≥ 0. Hence we let M = {x ∈ R

2: 0 ≤ x1 < 3/
√

5, 0 ≤ x2 < 1}, and
we seek D as a suitable closed subset of M .

For x ∈ M , let

Jg(x) =
(

∂g1/∂x1 ∂g1/∂x2

∂g2/∂x1 ∂g2/∂x2

)
.

Clearly,

∂g1

∂x1
= 0 ,

∂g1

∂x2
= −x2

(
1 − x2

2

)−1/2
,

∂g2

∂x1
= − 5√

21
x1

(
9 − 5x2

1

)−1/2
,

∂g2

∂x2
= 0 ,

so we conclude that, for any x ∈ M ,

‖Jg(x)‖∞ = max
(
x2

(
1 − x2

2

)−1/2
,

5√
21

x1

(
9 − 5x2

1

)−1/2
)

.

In particular, we have ‖Jg(x)‖∞ < 1 provided that

x2
2 < 1 − x2

2 and 25x2
1 < 21(9 − 5x2

1) ,

that is, when x2
2 < 1/2 and x2

1 < 189/130. These conditions are clearly
satisfied if, for example, 0 ≤ x1 ≤ 1 and 0 ≤ x2 ≤ 3/5. If we now define
D = [0, 1] × [0, 3/5], then, analogously as in (4.13), we have that

‖g(x) − g(y)‖∞ ≤ max
t∈[0,1]

‖Jg(tx + (1 − t)y)‖∞ ‖x− y‖∞
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for all x and y in D. Therefore, also,

‖g(x) − g(y)‖∞ ≤ L‖x− y‖∞

with

L = max
z∈D

‖Jg(z)‖∞ < 1 . (4.15)

With our choice of D, (4.15) holds with L = max{0.75, 0.55} = 0.75 < 1.
Furthermore, it is easy to check that g(D) ⊂ D. Thus we deduce from
Theorem 4.1 that g has a unique fixed point in D – we call this fixed
point ξ2, for the sake of consistency with the notation in Example 4.1;
moreover, the sequence (x(k)) defined by (4.14) converges to ξ2.

After all these preparations you are now probably curious to see
what the successive iterates look like: Table 4.1 gives a flavour of the
behaviour of the sequence (x(k)), with the starting value chosen as
x(0) = (0.5, 0.3)T. You can see that after 15 iterations the first 5 decimal
digits have settled to their correct values.1

4.3 Relaxation and Newton’s method

We now go on to apply the ideas developed in the previous section to
the construction of an iteration which converges to a solution of the
equation f(x) = 0, where f : R

n → R
n. One way of constructing such

a sequence is by relaxation.

Definition 4.4 The recursion

x(k+1) = x(k) − λf(x(k)) , k = 0, 1, 2, . . . , (4.16)

where x0 ∈ R
n is given and where λ �= 0 is a constant, is called simul-

taneous relaxation.

Suppose that the sequence (x(k)) converges to a limit ξ ∈ R
n and f is

continuous in a neighbourhood of ξ; then, on passing to the limit k → ∞
in (4.16), we deduce that ξ is a solution of the equation f(x) = 0.

Simultaneous relaxation is evidently a simultaneous iteration defined
by taking g(x) = x− λf(x).

1 You may wish to contemplate the following question: how many iterations should
be performed to ensure that all 15 digits have settled to their correct values? Use
inequality (4.6) to get an idea of the (maximum) amount of work involved!
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Table 4.1. The first 15 iterates in the sequence x(k) = (x(k)
1 , x

(k)
2 )T

defined by (4.14), with starting value (0.5, 0.3)T. The exact solution is
ξ2 = (

√
3/2, 1/2)T = (0.866025403784439, 0.500000000000000)T to 15

decimal digits.

k x
(k)
1 x2(k)

0 0.500000000000000 0.300000000000000
1 0.953939197667987 0.607492896293956
2 0.794325110362489 0.460331145598201
3 0.887747281827575 0.527583804908580
4 0.849502989281489 0.490845908224662
5 0.871246402792635 0.506703790432366
6 0.862120217116774 0.497835722000956
7 0.867271349636195 0.501604267098156
8 0.865097196405654 0.499485546313646
9 0.866322220091208 0.500382434879534

10 0.865804492286815 0.499877559050176
11 0.866096083560039 0.500091082450647
12 0.865972810920378 0.499970850112656
13 0.866042232825645 0.500021687802653
14 0.866012881963649 0.499993059704778
15 0.866029410728674 0.500005163847862

Theorem 4.3 Suppose that f(ξ) = 0, and that all the first partial
derivatives of f = (f1, . . . , fn)T are defined and continuous in some
(open) neighbourhood of ξ, and satisfy a condition of strict diagonal
dominance at ξ; i.e.,

∂fi
∂xi

(ξ) >
n∑
j=1
j 
=i

∣∣∣∣ ∂fi∂xj
(ξ)

∣∣∣∣ , i = 1, 2, . . . , n . (4.17)

Then, there exist ε > 0 and a positive constant λ such that the relaxation
iteration (4.16) converges to ξ for any x0 in the closed ball B̄ε(ξ) of
radius ε, centre ξ.

Proof The elements of the Jacobian matrix Jg(ξ) = (γij) ∈ R
n×n of the

function x �→ g(x) = x− λf(x) at x = ξ are

γii(ξ) = 1−λ
∂fi
∂xi

(ξ) , γij(ξ) = −λ
∂fi
∂xj

(ξ) , j �= i , i, j ∈ {1, . . . , n} .
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We now define

m =
n

max
i=1

∂fi
∂xi

(ξ)

and then choose λ = 1/m. Under hypothesis (4.17), m > 0 and therefore
λ > 0. This choice of λ ensures that all the diagonal elements γii(ξ),
i = 1, . . . , n, of Jg(ξ) are nonnegative. Moreover, for any i ∈ {1, . . . , n},

n∑
j=1

|γij(ξ)| = 1 − λ
∂fi
∂xi

(ξ) + λ

n∑
j=1
j 
=i

∣∣∣∣ ∂fi∂xj
(ξ)

∣∣∣∣ < 1 ,

by condition (4.17); consequently, ‖Jg(ξ)‖∞ < 1. As ξ is a fixed point
of g, it follows from Theorem 4.2 that there exists ε > 0 such that the
iteration (4.16) converges to ξ for all x(0) ∈ B̄ε(ξ).

The condition of strict diagonal dominance will only be satisfied in a
small class of problems (although this class does contain some examples
of practical importance). More generally it will be necessary to replace
the scalar λ by a nonsingular constant matrix Λ, giving a more general
relaxation iteration

x(k+1) = x(k) − Λf(x(k)) , k = 0, 1, 2, . . . .

This may be interpreted as trying to solve the new system of equations
Λf(x) = 0. The Jacobian matrix of this system is ΛJf , where Jf is
the Jacobian matrix of f . It is now possible to select the matrix Λ so
that ΛJf (ξ) has the property of strict diagonal dominance. In principle,
this can obviously be done by choosing Λ = [Jf (ξ)]−1, the inverse of the
Jacobian matrix of f evaluated at the solution ξ. The Jacobian matrix
of the new system is then the identity matrix, which clearly satisfies
the diagonal dominance condition. However, this choice is not possible
in practice, since of course the solution ξ is unknown. If we allow the
matrix Λ to be a function of x, instead of being constant, the argument
above suggests taking

Λ = [Jf (x(k))]−1 ,

leading to Newton’s method for a system of equations.

Definition 4.5 The recursion defined by

x(k+1) = x(k) − [Jf (x(k))]−1f(x(k)) , k = 0, 1, 2, . . . , (4.18)

where x0 ∈ R
n, is called Newton’s method (or Newton iteration) for
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the system of equations f(x) = 0. It is implicitly assumed that the
matrix Jf (x(k)) exists and is nonsingular for each k = 0, 1, 2, . . ..

The next theorem is concerned with the convergence of Newton’s
method. As in the scalar case, for a starting value x(0) that is suffi-
ciently close to the solution ξ of f(x) = 0, Newton’s method converges
quadratically. The precise definition of quadratic convergence is given
below: it resembles Definition 1.7 of Chapter 1.

Definition 4.6 Suppose that (x(k)) is a convergent sequence in R
n and

ξ = limk→∞ x(k). We say that (x(k)) converges to ξ with at least
order q > 1, if there exist a sequence (εk) of positive real numbers
converging to 0, and µ > 0, such that

‖x(k) − ξ‖∞ ≤ εk , k = 0, 1, 2, . . . , and lim
k→∞

εk+1

εqk
= µ .

(4.19)
If (4.19) holds with εk = ‖x(k) − ξ‖∞, k = 0, 1, 2, . . ., then the sequence
(x(k)) is said to converge to ξ with order q. In particular, if q = 2,
then we say that the sequence (x(k)) converges to ξ quadratically.

Again, due to (4.4), if a sequence (x(k)) converges quadratically in the
∞-norm, then it also does so in the p-norm for any p ∈ [1,∞), though
the constant µ may be different.

Theorem 4.4 Suppose that f(ξ) = 0, that in some (open) neighbour-
hood N(ξ) of ξ, where f is defined and continuous, all the second-order
partial derivatives of f are defined and continuous, and that the Jaco-
bian matrix Jf (ξ) of f at the point ξ is nonsingular. Then, the sequence
(x(k)) defined by Newton’s method (4.18) converges to the solution ξ pro-
vided that x(0) is sufficiently close to ξ; the convergence of the sequence
(x(k)) to ξ is at least quadratic.

Proof Let us begin by writing Newton’s method as a simultaneous iter-
ation x(k+1) = g(x(k)), k = 0, 1, 2, . . ., as in (4.3), with x0 given and

g(x) = x− [Jf (x)]−1f(x) .

The idea of the proof is to verify that the function g satisfies all the
conditions of Theorem 4.2 in a certain closed ball centred at ξ, the fixed
point of g, and thus deduce that the sequence (x(k)) converges to ξ.

As the function x �→ detJf (x) is continuous in N(ξ) and detJf (ξ) �= 0,
there exists ε > 0 such that detJf (x) �= 0 for all x ∈ B̄ε(ξ) ⊂ N(ξ).
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Further, as the entries of [Jf (x)]−1 depend continuously on the entries
of Jf (x) and since the entries of Jf ( · ) are continuous functions of x in
N(ξ), we deduce that x �→ [Jf (x)]−1f(x) is a continuous function on
B̄ε(ξ); therefore,

x �→ g(x) = x− [Jf (x)]−1f(x)

is also a continuous function on B̄ε(ξ). For later reference, we note that
x �→ ‖[Jf (x)]−1‖∞, too, is a continuous function on B̄ε(ξ), and therefore
it is a bounded function on B̄ε(ξ); we define

C = max
x∈B̄ε(ξ)

‖[Jf (x)]−1‖∞ .

Now, ξ is a fixed point of g and, by the hypotheses of the theorem,
the entries of the Jacobian matrix Jg of g are continuous functions of
x on B̄ε(ξ). Furthermore, it is easy to check that all the elements of
the Jacobian matrix Jg(x) of g vanish at x = ξ; see Exercise 6. Hence,
‖Jg(ξ)‖∞ = 0 < 1, trivially. Thus we have shown that g: R

n → R
n

satisfies all the conditions of Theorem 4.2 on the closed set D = B̄ε(ξ),
and the convergence of the sequence (x(k)) to ξ, as k → ∞, follows.

To show that convergence is at least quadratic, we write the iteration
in the form

Jf (x(k)) [x(k+1) − ξ] = Jf (x(k)) [x(k) − ξ] − f(x(k)) . (4.20)

Taylor’s Theorem for a function of n variables, Theorem A.7 (including
only the first-order terms), implies that, when x(k) ∈ B̄ε(ξ),

0 = f(ξ) = f(x(k)) + Jf (x(k))[ξ − x(k)] +Ef , (4.21)

where

‖Ef‖∞ ≤ 1
2n

2Af‖ξ − x(k)‖2
∞ , (4.22)

and

Af = max
1≤i,j,l≤n

max
x∈B̄ε(ξ)

∣∣∣∣ ∂2fi
∂xj∂xl

(x)
∣∣∣∣

is a bound on all the second-order partial derivatives of f on B̄ε(ξ). The
factor n2 in (4.22) stems from the fact that, for each i ∈ {1, . . . , n}, fi
is a function of n variables and therefore it has n2 second-order partial
derivatives – each bounded by Af over B̄ε(ξ). From (4.21) and (4.20)
we see that

x(k+1) − ξ = [Jf (x(k))]−1Ef ,
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and so

‖x(k+1) − ξ‖∞ ≤ 1
2n

2Af C‖x(k) − ξ‖2
∞ .

On writing M = 1
2n

2AfC, we then deduce by induction that

‖x(k) − ξ‖∞ ≤ 1
M

(
M‖x(0) − ξ‖∞

)2k

, k = 0, 1, 2, . . . .

Suppose that x(0) ∈ B̄ε(ξ) where ε ≤ 1
2 min{1, 1/M}. Then,

M‖x(0) − ξ‖∞ ≤ 1
2
, k = 0, 1, 2, . . . ,

and hence

‖x(k) − ξ‖∞ ≤ 1
M

(
1
2

)2k

This implies that convergence is at least quadratic (on choosing εk =
M−12−2k

and q = 2 in Definition 4.6).

Newton’s method is defined in (4.18) by using the inverse of the Jaco-
bian matrix. As we saw in Chapter 2 it is more efficient to avoid inverting
a matrix, if possible. In practice the method is therefore implemented
by writing (4.18) in the form

Jf (x(k))[x(k+1) − x(k)] = −f(x(k)) . (4.23)

Given the vector x(k), we calculate f(x(k)) and the Jacobian matrix
Jf (x(k)) ∈ R

n×n, and then solve the system of linear equations (4.23)
by Gaussian elimination; this gives the increment vector x(k+1) − x(k),
which is added to x(k) to obtain the new iterate x(k+1).

Example 4.5We close this section with an example which illustrates the
application of Newton’s method. Consider the simultaneous nonlinear
equations

f1(x, y, z) ≡ x2 + y2 + z2 − 1 = 0 ,

f2(x, y, z) ≡ 2x2 + y2 − 4z = 0 ,

f3(x, y, z) ≡ 3x2 − 4y + z2 = 0 .

Letting f = (f1, f2, f3)T and x = (x, y, z)T, the aim of the exercise is to
determine the solution to the equation f(x) = 0 contained in the first
octant {(x, y, z) ∈ R

3: x > 0 , y > 0 , z > 0} in R
3.
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Fig. 4.3. Example 4.5: Projections onto the (y, z)-plane of the intersection-
curves of the surfaces f1(x, y, z) = 0 and f2(x, y, z) = 0, and f1(x, y, z) = 0 and
f3(x, y, z) = 0. The two curves intersect at the point P whose two coordinates
are the y- and z-coordinates of ξ, the solution of the system f1(x, y, z) = 0,
f2(x, y, z) = 0, f3(x, y, z) = 0.

Note that the Jacobian matrix of f at x ∈ R
3 is

Jf (x) =


 2x 2y 2z

4x 2y −4
6x −4 2z


 .

Since the first equation represents a sphere of radius 1 centred at
(0, 0, 0), and the second and third equations describe elliptic paraboloids
whose axes are aligned with the coordinate semi-axes (0, 0, z), z ≥ 0,
and (0, y, 0), y ≥ 0, respectively, the point of intersection of the three
surfaces belongs to [0, 1]3. Let us denote this point by ξ. In order to
select a suitable starting value x(0) for the iteration, we observe that
the intersection of the first and the second surface is a curve whose
projection onto the (y, z)-plane has the equation y2 + 2z2 + 4z = 2,
while the intersection of the first and the third surface is a curve whose
projection onto the (y, z)-plane has the equation 3y2 + 4y + 2z2 = 3.
The two curves are shown in Figure 4.3; the point P where the curves
intersect has the same y- and z-coordinates as ξ. The x-coordinate of
ξ can be obtained from the first equation in terms of the y- and z-
coordinates of P via x = +(1 − y2 − z2)1/2. As the two coordinates of
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P are, very roughly, y ≈ 0.5 and z ≈ 0.5, it is reasonable to choose as
starting value for the Newton iteration the point x(0) = (0.5, 0.5, 0.5)T.

Thus, f(x(0)) = (−0.25,−1.25,−1.00)T and

Jf (x(0)) =


 1 1 1

2 1 −4
3 −4 1


 .

On solving the system of linear equations

Jf (x(0))
(
x(1) − x(0)

)
= −f(x(0))

for x(1) − x(0), we find that x(1) = (0.875, 0.500, 0.375)T. Similarly,

x(2) = (0.78981, 0.49662, 0.36993)T ,

x(3) = (0.78521, 0.49662, 0.36992)T .

As f(x(3)) = 10−5(1, 4, 5)T, the vector x(3) can be thought of as a
satisfactory approximation to the required solution ξ; after rounding to
four decimal digits, we have that

x = 0.7852 , y = 0.4966 , z = 0.3699 .

�

4.4 Global convergence

Much of the discussion of the global convergence of Newton’s method for
a single equation in Section 1.7 applies, with obvious changes, in the case
of several variables. If the system has several solutions, ξ1, ξ2, . . ., we
can define the corresponding sets S1, S2, . . . in R

n so that Sj comprises
those starting points from which Newton’s method converges to ξj . As
before, the sets Sj , j = 1, 2, . . ., have the property that any point on the
boundary of one of the sets is also on the boundary of the others. The
difference now is that for systems of equations in R

n, n ≥ 2, these sets
can be much more complicated than in the case of a single equation on
the real line R

1 = R.
To illustrate this point for n = 2, we return to our earlier example

problem, Example 1.7 from Chapter 1, but now extend it to complex
variables, so we require to solve ez − z − 2 = 0 for the complex number
z = x + ıy. Separating this equation into real and imaginary parts we
obtain a system of two nonlinear equations for the unknowns x1 = x

and x2 = y. The system has the two real solutions which we found in
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Chapter 1, and also an infinite number of complex solutions. It is easy
to see from the periodic character of eıy that the equation has a solution
near wm = (2m + 1

2 )ıπ, ı =
√

−1, for integer values of m; a better
estimate is given in Exercise 9. It is a good deal more difficult to prove
that there are no other solutions.

The behaviour of Newton’s method for this problem may be illustrated
by showing a picture of the complex plane, with the sets Sj depicted in
different colours. In our example we cannot, of course, show more than
a small number of the solutions, and cannot use an infinite number of
colours. We have therefore coloured the sets with six colours cyclically,
so that, for example, the sets S1, S7, S13, . . . have the same colour. The
background colour, white, represents the set S1 of points from which
the iteration converges to the real negative root. It includes most of
the negative half-plane. Successive pictures in the series from Figure 4.5
to Figure 4.9 show a magnified view of a small region of the previous
picture, the region being outlined in black. In Figure 4.4 the black
crosses mark the positions of solutions of f(z) = 0. The pictures show
in a striking way the fractal behaviour of the boundary of a set. Figure
4.9 is very similar to Figure 4.5; the former is a magnified view of a
small part of Figure 4.5, with a magnification of about 50000 in each
direction. The same sort of behaviour is repeated when the picture is
magnified indefinitely.

4.5 Notes

For an introduction to the topology of R
n, including the definitions of

open set, closed set, continuity, convergence and Cauchy sequence, the
reader is referred to any standard textbook on the subject; see, e.g.,

➧ W. Rudin, Principles of Mathematical Analysis, Third Edition, In-
ternational Series in Pure and Applied Mathematics, McGraw–Hill,
New York, Auckland, Düsseldorf, 1976,

➧ S.A. Douglass, Introduction to Mathematical Analysis, Addison–
Wesley, Reading, MA, 1996.

Our first remark concerns the Contraction Mapping Theorem, Theo-
rem 4.1, which is a direct generalisation of Theorem 1.3 from Chapter
1. Comparing the proofs of Theorems 1.3 and 4.1, we see that the proof
of Theorem 1.3 is much simpler. This is not accidental: in the case of
a single equation x = g(x), involving a real-valued function g of a sin-
gle real variable x, the existence of a fixed point follows directly from
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Theorem 1.2, Brouwer’s Fixed Point Theorem on a bounded closed in-
terval of the real line. On the other hand, for the simultaneous system
of equations x = g(x) in R

n considered in Theorem 4.1 we had to invoke
the completeness of R

n (i.e., the property that every Cauchy sequence
in R

n is a convergent sequence) to show the existence of a fixed point.
An alternative, shorter proof of Theorem 4.1 could have been devised
by applying Brouwer’s Fixed Point Theorem in R

n.

Theorem 4.5 (Brouwer’s Fixed Point Theorem) Let us assume
that D is a nonempty, closed, bounded and convex subset of R

n. Suppose
further that g: R

n �→ R
n is a continuous function defined on D such that

g(D) ⊂ D. Then, there exists ξ ∈ D such that g(ξ) = ξ.

A set D ⊂ R
n is said to be convex if, whenever x and y belong to D,

also

θx + (1 − θ)y ∈ D ∀ θ ∈ [0, 1] .

For example, any nonempty interval of the real line R
1 = R is a convex

set, as is a nonempty (open or closed) ball in R
n, n ≥ 2. Unfortunately,

when n ≥ 2 the proof of Theorem 4.5 is nontrivial and is well beyond
the scope of this book.1

Benoit Mandelbrot (1924– ) has been largely responsible for the present
interest in fractal geometry and its connections with iterative methods.
Mandelbrot highlighted in his book

➧ B. Mandelbrot, Fractals: Form, Chance, and Dimension, W.H.
Freeman, San Francisco, 1977,

and, more fully, in

➧ B. Mandelbrot, The Fractal Geometry of Nature, W.H. Freeman,
New York, 1983,

the omnipresence of fractals both in mathematics and elsewhere in na-
ture. In relation with the subject of this chapter, we note that the
Mandelbrot set is a connected set of points in the complex plane de-
fined as follows. Choose a point z0 in the complex plane, and consider
the iteration zn+1 = z2

n+z0, n = 0, 1, 2, . . .. If the sequence z0, z1, z2, . . .

remains within a distance of 2 from the origin for ever, then the point z0

1 For a proof of Theorem 4.5 in the case when D is a closed ball in Rn, see John
W. Milnor, Topology from the Differentiable Viewpoint, Princeton Landmarks in
Mathematics, 1997.
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is said to be in the Mandelbrot set. If the sequence diverges from the
origin, then the point z0 is not in the set.

A standard reference for theoretical results concerning the convergence
of Newton’s method in complete normed linear spaces is

➧ L.V. Kantorovich and G.P. Akilov, Functional Analysis, Second
edition, Pergamon Press, Oxford, New York, 1982.

A further significant book in the area of iterative solution of systems of
nonlinear equations is the text by

➧ J.M. Ortega and W.C. Rheinboldt, Iterative Solution of Non-
linear Equations in Several Variables, Reprint of the 1970 original,
Classics in Applied Mathematics, 30, SIAM, Philadelphia, 2000.

It gives a comprehensive treatment of the numerical solution of n non-
linear equations in n unknowns, covering asymptotic convergence results
for a number of algorithms, including Newton’s method, as well as exis-
tence theorems for solutions of nonlinear equations based on the use of
topological degree theory and Brouwer’s Fixed Point Theorem.

Exercises

4.1 Suppose that the function g is a contraction in the ∞-norm, as
in (4.5). Use the fact that

‖g(x) − g(y)‖p ≤ n1/p‖g(x) − g(y)‖∞
to show that g is a contraction in the p-norm if L < n−1/p.

4.2 Show that the simultaneous equations f(x1, x2) = 0, where
f = (f1, f2)T, with

f1(x1, x2) = x2
1 + x2

2 − 25 , f2(x1, x2) = x1 − 7x2 − 25 ,

have two solutions, one of which is x1 = 4, x2 = −3, and find the
other. Show that the function f does not satisfy the conditions
of Theorem 4.3 at either of these solutions, but that if the sign
of f2 is changed the conditions are satisfied at one solution,
and that if f is replaced by f∗ = (f2 − f1,−f2)T, then the
conditions are satisfied at the other. In each case, give a value
of the relaxation parameter λ which will lead to convergence.
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4.3 The complex-valued function z �→ g(z) of the complex variable
z is holomorphic in a convex region Ω containing the point ζ, at
which g(ζ) = ζ. By applying the Mean Value Theorem (The-
orem A.3) to the function ϕ of the real variable t defined by
ϕ(t) = g((1 − t)u+ tv) show that if u and v lie in Ω, then there
is a complex number η in Ω such that

g(u) − g(v) = (u − v)g′(η) .

Hence show that if |g′(ζ)| < 1, then the complex iteration de-
fined by zk+1 = g(zk), k = 0, 1, 2, . . ., converges to ζ provided
that z0 is sufficiently close to ζ.

4.4 Suppose that in Exercise 3 the real and imaginary parts of g are
u and v, so that g(x + ıy) = u(x, y) + ıv(x, y), ı =

√
−1. Show

that the iteration defined by x(k+1) = g∗(x(k)), k = 0, 1, 2, . . .,
where g∗(x) = (u(x1, x2), v(x1, x2))T, generates the real and
imaginary parts of the sequence defined in Exercise 3. Compare
the condition for convergence given in that exercise with the
sufficient condition given by Theorem 4.2.

4.5 Verify that the iteration x(k+1) = g(x(k)), k = 0, 1, 2, . . . , where
g = (g1, g2)T and g1 and g2 are functions of two variables defined
by

g1(x1, x2) = 1
3 (x2

1 − x2
2 + 3) , g2(x1, x2) = 1

3 (2x1x2 + 1) ,

has the fixed point x = (1, 1)T. Show that the function g does
not satisfy the conditions of Theorem 4.3. By applying the
results of Exercises 3 and 4 to the complex function g defined
by

g(z) = 1
3 (z2 + 3 + ı) , z ∈ C , ı =

√
−1 ,

show that the iteration, nevertheless, converges.
4.6 Suppose that all the second-order partial derivatives of the func-

tion f : R
n → R

n are defined and continuous in a neighbourhood
of the point ξ in R

n, at which f(ξ) = 0. Assume also that the
Jacobian matrix, Jf (x), of f is nonsingular at x = ξ, and de-
note its inverse by K(x) at all x for which it exists. Defining the
Newton iteration by x(k+1) = g(x(k)), k = 0, 1, 2, . . ., with x0

given, where g(x) = x − K(x)f(x), show that the (i, j)-entry
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of the Jacobian matrix Jg(x) ∈ R
n×n of g is

δij −
k∑
r=1

∂Kir
∂xj

fr −
k∑
r=1

KirJrj , i, j = 1, . . . , n ,

where Jrj is the (r, j)-entry of Jf (x). Deduce that all the ele-
ments of this matrix vanish at the point ξ.

4.7 The vector function x �→ f(x) of two variables is defined by

f1(x1, x2) = x2
1 + x2

2 − 2 , f2(x1, x2) = x1 − x2 .

Verify that the equation f(x) = 0 has two solutions, x1 = x2 =
1 and x1 = x2 = −1. Show that one iteration of Newton’s
method for the solution of this system gives x(1) = (x(1)

1 , x
(1)
2 )T,

with

x
(1)
1 = x

(1)
2 =

(
x

(0)
1

)2

+
(
x

(0)
2

)2

+ 2

2
(
x

(0)
1 + x

(0)
2

) .

Deduce that the iteration converges to (1, 1)T if x
(0)
1 + x

(0)
2 is

positive, and, if x
(0)
1 + x

(0)
2 is negative, the iteration converges

to the other solution. Verify that convergence is quadratic.
4.8 Suppose that ξ = limk→∞ x(k) in R

n. Following Definition
1.4, explain what is meant by saying that the sequence (x(k))
converges to ξ linearly, with asymptotic rate − log10 µ, where
0 < µ < 1.

Given the vector function x �→ f(x) of two real variables x1

and x2 defined by

f1(x1, x2) = x2
1 + x2

2 − 2 , f2(x1, x2) = x1 + x2 − 2 ,

show that f(ξ) = 0 when ξ = (1, 1)T. Suppose that x
(0)
1 �= x

(0)
2 ;

show that one iteration of Newton’s method for the solution
of f(x) = 0 with starting value x(0) = (x(0)

1 , x
(0)
2 )T then gives

x(1) = (x(1)
1 , x

(1)
2 )T such that x

(1)
1 + x

(1)
2 = 2. Determine x(1)

when

x
(0)
1 = 1 + α , x

(0)
2 = 1 − α ,

where α �= 0. Assuming that x
(0)
1 �= x

(0)
2 , deduce that Newton’s

method converges linearly to (1, 1)T, with asymptotic rate of
convergence log10 2. Why is the convergence not quadratic?
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4.9 Suppose that the equation ez = z + 2, z ∈ C, has a solution

z = (2m + 1
2 )ıπ + ln[(2m + 1

2 )π] + η ,

where m is a positive integer and ı =
√

−1. Show that

η = ln[1 − ı(ln(2m + 1
2 )π + η + 2)/(2m + 1

2π)]

and deduce that η = O(ln m/m) for large m.
(Note that | ln(1 + ıt)| < |t| for all t ∈ R \ {0}.)
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Fig. 4.4. The sets Sk in the region −5 ≤ x ≤ 15, −4 ≤ y ≤ 24 of the complex
plane.

Fig. 4.5. The sets Sk in the region 2 ≤ x ≤ 3, 1.6 ≤ y ≤ 2.6 of the complex
plane.
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Fig. 4.6. The sets Sk in the region 2.4 ≤ x ≤ 2.55, 2.1 ≤ y ≤ 2.25 of the
complex plane.

Fig. 4.7. The sets Sk in the region 2.4825 ≤ x ≤ 2.4975, 2.2075 ≤ y ≤ 2.2225
of the complex plane.
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Fig. 4.8. The sets Sk in the region 2.4930 ≤ x ≤ 2.4960, 2.2100 ≤ y ≤ 2.2130
of the complex plane.

Fig. 4.9. The sets Sk in the region 2.493645 ≤ x ≤ 2.493665, 2.21073 ≤ y ≤
2.21075 of the complex plane.
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Eigenvalues and eigenvectors of a symmetric
matrix

5.1 Introduction

Eigenvalue problems for symmetric matrices arise in all areas of ap-
plied science. The terminology eigenvalue comes from the German word
Eigenwert which means proper or characteristic value. The concept of
eigenvalue first appeared in an article on systems of linear differential
equations by the French mathematician d’Alembert1 in the course of
studying the motion of a string with masses attached to it at various
points.

Let us recall from Chapter 2 the definition of eigenvalue and eigen-
vector.

Definition 5.1 Suppose that A ∈ R
n×n. A complex number λ for which

the set of linear equations

Ax = λx (5.1)

has a nontrivial solution x ∈ C
n
∗ = C

n \ {0} is called an eigenvalue
of A; the associated solution x ∈ C

n
∗ is called an eigenvector of A

(corresponding to λ).

1 Jean le Rond d’Alembert (17 November 1717, Paris, France – 29 October 1783,
Paris, France) was abandoned as a newly born child on the steps of the church of
St Jean le Rond in Paris and spent his early life in a home for homeless children.
d’Alembert was the central mathematical figure among the French Encyclopedists
in the period 1751–1772; the Encyclopedia, edited by Jean Diderot, comprised 28
volumes. D’Alembert made a number of significant contributions to the dynamics
of rigid bodies, hydrodynamics, aerodynamics, the three-body problem, and the
theory of vibrating strings.

133
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In order to motivate the discussion that will follow, we begin with two
familiar elementary examples.

In considering the rotation of a rigid body Ω ⊂ R
3, the inertia matrix

is the 3 × 3 symmetric matrix

J =


 Ixx −Ixy −Ixz

−Iyx Iyy −Iyz
−Izx −Izy Izz




whose diagonal elements are the moments of inertia about the axes,

Ixx =
∫

Ω

(y2 + z2) dΩ, Iyy =
∫

Ω

(z2 + x2) dΩ, Izz =
∫

Ω

(x2 + y2) dΩ,

and whose off-diagonal elements are defined by the corresponding prod-
ucts of inertia

Ixy = Iyx =
∫

Ω

xy dΩ ,

Iyz = Izy =
∫

Ω

yz dΩ ,

Izx = Ixz =
∫

Ω

zxdΩ .

Then, the eigenvectors of the inertia matrix are the directions of the
principal axes of inertia of the body, about which free steady rotation is
possible, and the eigenvalues are the principal moments of inertia about
these axes.

A second example, which involves matrices of any order, arises in the
solution of systems of linear ordinary differential equations of the form

dx
dt

= Ax ,

where x is a vector of n elements, each of which is a function of the
independent variable t, and A is an n × n matrix whose elements are
constants. If A were a diagonal matrix, with diagonal elements aii = λi,
i = 1, 2, . . . , n, the solution of this system would be straightforward, as
each of the equations could be solved separately, giving

xi(t) = xi(0) exp(λit) , i = 1, 2, . . . , n .

When A is not a diagonal matrix, suppose that we can find a nonsingular
matrix M such that

M−1AM = D ,
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where D is a diagonal matrix. Then, on letting

y = M−1x ,

we easily see that
dy
dt

= M−1AMy = Dy .

The solution of this system of differential equations is straightforward,
as we have just seen, and we then find that

xi = (My)i =
n∑
j=1

Mijyj(0) exp(λjt) ,

where λj = djj is one of the diagonal elements of D. The numbers λj ,
j = 1, 2, . . . , n, are the eigenvalues of the matrix A ∈ R

n×n, and the
columns of M are the eigenvectors of A, so the solution of this system
of differential equations requires the calculation of the eigenvalues and
eigenvectors of the matrix A.

In systems of differential equations of this kind the matrix A is not
necessarily symmetric. In that case, the problem is more difficult; if
the eigenvalues of A are not distinct there may not exist a complete set
of linearly independent eigenvectors, and then the matrix M will not
exist.1

In this chapter, we shall develop numerical algorithms for the solution
of the algebraic eigenvalue problem (5.1), assuming throughout that A ∈
R
n×n is a symmetric matrix. As has been noted above, the analogous

problem for a nonsymmetric matrix is more involved, and will not be
considered here.2

Throughout this chapter, the set of all real-valued symmetric matrices
of order n will be denoted by R

n×n
sym ; thus, given a matrix A = (aij),

A ∈ R
n×n
sym ⇔ A ∈ R

n×n & aij = aji , i, j = 1, 2, . . . , n .

We begin with a reminder of some fundamental properties.
1 Consider, for example,

A =

(
1 2
0 1

)
.

This matrix has one eigenvalue of multiplicity 2, λ1/2 = 1, and only one (linearly

independent) eigenvector, (1, 0)T.
2 The reader is referred to the last four chapters of J.H. Wilkinson’s monograph,

The Algebraic Eigenvalue Problem, The Clarendon Press, Oxford University Press,
New York, 1988.
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Theorem 5.1 Suppose that A ∈ R
n×n
sym ; then, the following statements

are valid.

(i) There exist n linearly independent eigenvectors x(i) ∈ R
n and

corresponding eigenvalues λi ∈ R such that Ax(i) = λix
(i) for all

i = 1, 2, . . . , n.
(ii) The function

λ �→ det(A − λI) (5.2)

is a polynomial of degree n with leading term (−1)nλn, called the
characteristic polynomial of A. The eigenvalues of A are the
zeros of the characteristic polynomial.

(iii) If the eigenvalues λi and λj of A are distinct, then the corre-
sponding eigenvectors x(i) and x(j) are orthogonal in R

n, i.e.,

x(i)Tx(j) = 0 if λi �= λj , i, j ∈ {1, 2, . . . , n} .

(iv) If λi is a root of multiplicity m of (5.2), then there is a linear sub-
space in R

n of dimension m, spanned by m mutually orthogonal
eigenvectors associated with the eigenvalue λi.

(v) Suppose that each of the eigenvectors x(i) of A is normalised,
in other words, x(i)Tx(i) = 1 for i = 1, 2, . . . , n, and let X denote
the square matrix whose columns are the normalised (orthogonal)
eigenvectors; then, the matrix Λ = XTAX is diagonal, and the
diagonal elements of Λ are the eigenvalues of A.

(vi) Let Q ∈ R
n×n be an orthogonal matrix and define B ∈ R

n×n
sym by

B = QTAQ; then, det(B − λI) = det(A − λI) for each λ ∈ R.
The eigenvalues of B are the same as the eigenvalues of A, and
the eigenvectors of B are the vectors QTx(i), i = 1, 2, . . . , n.

(vii) Any vector v ∈ R
n can be expressed as a linear combination of

the (ortho)normalised eigenvectors x(i), i = 1, 2, . . . , n, of A, i.e.,

v =
n∑
i=1

αix
(i), αi = x(i)Tv .

(viii) The trace of A, Trace(A) =
∑n
i=1 aii, is equal to the sum of the

eigenvalues of A.

These properties should be familiar; proofs will be found in any stan-
dard text on linear algebra.1

1 See, for example, T.S. Blyth and E.F. Robertson, Basic Linear Algebra, Springer
Undergraduate Mathematics Series, Springer, 1998, A.G. Hamilton, Linear Alge-
bra, Cambridge University Press, 1990, or R.A. Horn and C.R. Johnson, Matrix
Analysis, Cambridge University Press, 1992.
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5.2 The characteristic polynomial

Given that A ∈ R
n×n and n ≤ 4, it is quite easy to write down the

characteristic polynomial det(A−λI) by expanding the determinant, and
then find the roots of this polynomial of degree n in order to determine
the eigenvalues of A. If n > 4 there is no general closed formula for
the roots of a polynomial in terms of its coefficients, and therefore we
have to resort to a numerical technique. A further difficulty is that
the roots may be very sensitive to small changes in the coefficients of
the polynomial, and we find that the effect of rounding errors in the
construction of the characteristic polynomial is usually catastrophic.

Example 5.1 Consider, for example, the diagonal matrix of order 16
whose diagonal elements are j + 1

3 , j = 1, 2, . . . , 16; the eigenvalues are,
of course, just the diagonal elements. Constructing the characteristic
polynomial, working with 10 significant digits throughout, gives the result

λ16 − 141.3333333λ15 + 9193.333333λ14 − · · · .

Using a standard numerical algorithm (such as Newton’s method) for
computing the roots of the polynomial and working with 10 significant
digits gives the smallest root as 1.333333331, which is nearly correct to
10 significant digits. The three largest roots, however, are computed as,
approximately, 15.5 ± 1.3ı and 16.7, which are very different from their
true values 14.3̇, 15.3̇, 16.3̇, respectively, even though the matrix in this
example is of quite modest size, and the eigenvalues are well spaced.
Thus we conclude from this example that the numerical method which
constructs the characteristic polynomial and finds its roots is completely
unsatisfactory for general use, except for matrices of very small size. �

The fact that in general the roots of the characteristic polynomial
cannot be given in closed form shows that any method must proceed
by successive approximation. Although one cannot expect to produce
the required eigenvalues exactly in a finite number of steps, we shall see
that there exist rapidly convergent iterative methods for computing the
eigenvalues and eigenvectors numerically.

5.3 Jacobi’s method

This method uses a succession of orthogonal transformations to produce
a sequence of matrices which approaches a diagonal matrix in the limit.
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Each step in the process involves a matrix representing a plane rotation.
We begin with a simple example.

Example 5.2 (The plane rotation matrix in R
2) Let us suppose

that ϕ ∈ [−π, π] and consider the matrix R(ϕ) ∈ R
2×2 defined by

R(ϕ) =
(

cosϕ sinϕ

− sinϕ cosϕ

)
.

For a vector x ∈ R
2, R(ϕ)x is the plane rotation of x around the ori-

gin by an angle ϕ (in the clockwise direction when ϕ > 0 and in the
anticlockwise direction when ϕ < 0).
We note in passing that since cos(−ϕ) = cosϕ, sin(−ϕ) = − sinϕ and

cos2 ϕ + sin2 ϕ = 1, we have that

(R(ϕ))T = R(−ϕ) and R(ϕ)R(−ϕ) = I .

Hence R(ϕ) is an orthogonal matrix; i.e.,

R(ϕ)R(ϕ)T = R(ϕ)TR(ϕ) = I ,

where I is the 2 × 2 identity matrix.

The next definition extends the notion of plane rotation matrix to R
n.

Definition 5.2 (The plane rotation matrix in R
n) Suppose that

n ≥ 2, 1 ≤ p < q ≤ n and ϕ ∈ [−π, π]. We consider the matrix
R(pq)(ϕ) ∈ R

n×n whose elements are the same as those of the identity
matrix I ∈ R

n×n, except for the four elements

rpp = c , rpq = s ,

rqp = −s , rqq = c ,

where c = cos ϕ, s = sin ϕ.

As in Example 5.2, it is a straightforward matter to show that

(R(pq)(ϕ))T = R(pq)(−ϕ) , R(pq)(ϕ)R(pq)(−ϕ) = I ,

and that, therefore,

R(pq)(ϕ)(R(pq)(ϕ))T = (R(pq)(ϕ))TR(pq)(ϕ) = I .

Hence R(pq)(ϕ) ∈ R
n×n is an orthogonal matrix for any p, q such that

1 ≤ p < q ≤ n, and any ϕ ∈ [−π, π].
The basic result underlying Jacobi’s method is encapsulated in the

next theorem.
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Theorem 5.2 Suppose that A ∈ R
n×n
sym . For each pair of integers (p, q)

with 1 ≤ p < q ≤ n, there exists ϕ ∈ [−π/4, π/4] such that the (p, q)
entry of the symmetric matrix R(pq)(ϕ)TAR(pq)(ϕ) is equal to 0.

Proof For the sake of notational simplicity, we shall write R instead of
R(pq)(ϕ) throughout the proof, and abbreviate c = cos ϕ and s = sin ϕ.

Consider the product A′ = AR. Evidently the only difference be-
tween A′ and A is in columns p and q; these columns of A′ are linear
combinations of the same two columns of A:

a′ip = aipc − aiqs

a′iq = aips + aiqc

}
, i = 1, 2, . . . , n . (5.3)

Multiplication of A′ by RT on the left gives a similar result, but affects
rows p and q, rather than columns p and q. Writing B = RTA′ gives

bpj = a′pjc − a′qjs
bqj = a′pjs + a′qjc

}
, j = 1, 2, . . . , n . (5.4)

Combining these equations shows that B = RTAR, where

bpp = appc
2 − 2apqsc + aqqs

2,

bqq = apps
2 + 2apqsc + aqqc

2,

bpq = (app − aqq)sc + apq(c2 − s2) = bqp .


 (5.5)

The remaining elements of B = RTAR in columns p and q are given
by the expressions

bip = aipc − aiqs

biq = aips + aiqc

}
, i = 1, 2, . . . , n , i �= p, q .

The matrix B = RTAR is evidently symmetric, so the nondiagonal
elements of B in rows p and q are also given by the same expressions.

Finally, we note that all the elements of B which do not lie either
in row p or q or in column p or q are the same as the corresponding
elements of A, that is,

bij = aij , if i �= p, q and j �= p, q .

We see from (5.5) that in order to ensure that bpq, the (p, q)-entry of
the matrix B = RTAR, is equal to 0, it suffices to choose ϕ such that

tan 2ϕ =
2apq

aqq − app
; (5.6)
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thus we select

ϕ =
1
2

tan−1 2apq
aqq − app

∈ [−π/4, π/4] . (5.7)

To see this, apply the trigonometric identities c2 − s2 = cos(2ϕ) and
sc = 1

2 sin(2ϕ) to bpq in (5.5), with bpq = 0. That completes the proof.1

We can avoid the trigonometric calculations involved in the formula
(5.7) for ϕ by writing t = s/c, and seeing that t is required to satisfy

(app − aqq)t + apq(1 − t2) = 0 . (5.8)

If apq = 0, we can ensure that (5.8) holds by selecting t = 0 (which
corresponds to choosing ϕ = 0). If apq �= 0 and app = aqq, we put
t = 1 (corresponding to ϕ = π/4). Finally, if apq �= 0 and app �= aqq,
we solve the quadratic equation (5.8); there will be two distinct real
roots, so we define t as the one that is smaller in absolute value. Having
selected t, we then use the relation sec2 ϕ = 1 + tan2 ϕ to calculate c by
c = 1/(1 + t2)1/2, and then s from s = ct.

Definition 5.3 (The classical Jacobi method) Let A ∈ R
n×n
sym and

define A(0) = A. Given k ≥ 0 and A(k) ∈ R
n×n
sym , the basic step of

Jacobi’s method computes A(k+1) ∈ R
n×n
sym by first locating the largest in

absolute value off-diagonal element (A(k))pq = a
(k)
pq of the matrix A(k),

and then setting A(k+1) = R(pq)(ϕk)TA(k) R(pq)(ϕk) with ϕk chosen so
as to reduce (A(k+1))pq to zero. This process is then repeated until all
the off-diagonal elements are smaller than a given positive tolerance ε.

In order to show that as k → ∞ the sequence of matrices (A(k))
generated by successive steps of the classical Jacobi method converges
to a diagonal matrix (whose diagonal entries are the eigenvalues of the
original matrix A), we need the following result.

Lemma 5.1 The sum of squares of the elements of a symmetric matrix
is invariant under an orthogonal transformation: that is, if A ∈ R

n×n
sym

1 For future reference, note that a simple calculation based on (5.5) and (5.6) gives

bii − aii =



0 if i �= p, q ,
−apq tanϕ if i = p ,
apq tanϕ if i = q .
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and B = RTAR where R ∈ R
n×n is an orthogonal matrix, then

n∑
i=1

n∑
j=1

b2
ij =

n∑
i=1

n∑
j=1

a2
ij . (5.9)

The quantity

‖A‖F =


 n∑
i=1

n∑
j=1

a2
ij




1/2

is called the Frobenius norm1 of A ∈ R
n×n. The Frobenius norm of

A ∈ R
n×n is the 2-norm of A, with A regarded as an element of a linear

space of dimension n2 over the field of real numbers; however, it is not
a subordinate norm in the sense of Definition 2.10. In particular, the
Frobenius norm on R

n×n is not subordinate to the 2-norm on R
n.

Now, one can express (5.9) equivalently by saying that the Frobenius
norm of a symmetric matrix A is invariant under an orthogonal trans-
formation: ‖RTAR‖F = ‖A‖F .

Proof of lemma The sum of squares of the elements of A is the same
as the trace of A2, for

Trace(A2) =
n∑
i=1

(A2)ii =
n∑
i=1

n∑
j=1

aijaji =
n∑
i=1

n∑
j=1

a2
ij , (5.10)

since A is symmetric. Analogously, as B = RTAR is symmetric, we
have that

Trace(B2) =
n∑
i=1

n∑
j=1

b2
ij .

Thus, it remains to show that Trace(B2) = Trace(A2). Now,

B2 = (RTAR)(RTAR) = RTA2R , (5.11)

since R is orthogonal. Hence B2 is an orthogonal transformation of A2

which, by virtue of Theorem 5.1 (vi), means that B2 and A2 have the
same eigenvalues, and therefore the same trace, since the trace is the
sum of the eigenvalues (see Theorem 5.1 (viii)).

1 Ferdinand Georg Frobenius (26 October 1849, Berlin-Charlottenburg, Prussia,
Germany – 3 August 1917, Berlin, Germany), contributed to the theory of an-
alytic functions, representation theory of groups, differential equation theory and
the theory of elliptic functions.
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Now we are ready to embark on the convergence analysis of the clas-
sical Jacobi method.

Theorem 5.3 Suppose that A ∈ R
n×n
sym , n ≥ 2. In the classical Jacobi

method the off-diagonal entries in the sequence of matrices (A(k)), gen-
erated from A(0) = A according to Definition 5.3, converge to 0 in the
sense that

lim
k→∞

n∑
i,j=1
i�=j

[(A(k))ij ]2 = 0 . (5.12)

Furthermore,

lim
k→∞

n∑
i=1

[(A(k))ii]2 = Trace(A2) . (5.13)

Proof Let apq be the off-diagonal element of A with largest absolute
value, and let B = (R(pq)(ϕ))TAR(pq)(ϕ), where ϕ is defined by (5.7).
Then, letting c = cos ϕ and s = sinϕ, we have that(

bpp bpq
bqp bqq

)
=
(

c s

−s c

)T (
app apq
aqp aqq

)(
c s

−s c

)
,

and Lemma 5.1 implies that

b2
pp + 2b2

pq + b2
qq = a2

pp + 2a2
pq + a2

qq .

Writing

S(A) =
n∑

i,j=1

a2
ij , D(A) =

n∑
i=1

a2
ii , L(A) =

n∑
i,j=1
i�=j

a2
ij ,

it follows that S(A) = D(A) +L(A). Now S(B) = S(A) by Lemma 5.1,
and so D(B) +L(B) = D(A) +L(A). The diagonal entries of B are the
same as those of A, except the ones in rows p and q, 1 ≤ p < q ≤ n.
Further, as bpq = 0, it follows that b2

pp+b2
qq = a2

pp+a2
qq+2a2

pq. Therefore,

D(B) = D(A) + 2a2
pq .

Consequently,

L(B) = L(A) − 2a2
pq .

Now apq is the largest off-diagonal element of A; hence L(A) ≤ Na2
pq

where N = n(n−1) is the number of off-diagonal elements, and therefore

L(B) ≤ (1 − 2/N)L(A) . (5.14)
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On writing A(0) = A, A(1) = B, and generating subsequent members
of the sequence (A(k)) in a similar manner, as indicated in the algorithm
in Definition 5.3, we deduce from (5.14) that

0 ≤ L(A(k)) ≤ (1 − 2/N)kL(A) , k = 1, 2, 3, . . . , (5.15)

where N ≥ 2. Thus we conclude that limk→∞ L(A(k)) = 0.
Now, (5.13) follows from (5.10) and (5.12) on noting that

Trace(A2) = S(A) = S(A(k)) = D(A(k)) + L(A(k)) ∀ k ≥ 0 ,

and passing to the limit k → ∞: Trace(A2) = limk→∞ D(A(k)).

According to Theorem 5.1 (viii) the trace of A2 is the sum of the eigen-
values of A2, and the eigenvalues of A2 are the squares of the eigenvalues
of A. Thus, we have shown that the sum of the squares of the diagonal
elements in the sequence of matrices (A(k)) generated by the classical
Jacobi method converges to the sum of the squares of the eigenvalues
of A. More work is required to show that for each i = 1, 2, . . . , n the
sequence of diagonal elements (a(k)

ii ) converges to an eigenvalue of A as
k → ∞. We shall further discuss this question in the final paragraphs
of Section 5.4. First, however, we describe another variant of Jacobi’s
method.

Definition 5.4 (The serial Jacobi method) This version of Jacobi’s
method proceeds in a systematic order, using transformations R(pq)(ϕ)
to reduce to zero the elements (1, 2), (1, 3), . . ., (1, n), (2, 3), (2, 4), . . .,
(2, n), . . ., (n − 1, n) in this order. The complete step is then repeated
iteratively.

It is not difficult to prove that this method also converges. Both
these variants of the Jacobi method converge quite rapidly; the rate of
convergence is in practice much faster than is suggested by (5.15), and
in fact it can be shown that convergence is ultimately quadratic.

It is time for an example!

Example 5.3 Let us consider the 5 × 5 matrix

A =




4 1 2 1 2
1 3 0 −3 4
2 0 1 2 2
1 −3 2 4 1
2 4 2 1 1


 . (5.16)
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The values of D(A(k)) and L(A(k)) after each iteration of the serial
Jacobi method, with A(0) = A, are shown in Table 5.1. The off-diagonal
elements of the third iterate, A(3), are zero to 10 decimal digits. The
diagonal elements of A(3), which give the eigenvalues, are

8.094, 1.690, −0.671, 7.170, −3.282 .

Note that the eigenvalues do not appear in any particular order.

Table 5.1. Convergence of the serial Jacobi iteration.

k D(A(k)) L(A(k))

0 43.000 88.00000000
1 126.309 4.69087885
2 130.981 0.01948855
3 131.000 0.00000000

This concludes the discussion about the use of Jacobi’s method for
computing the eigenvalues of a symmetric matrix A. ‘Fine,’ you might
say, ‘but how do we determine the eigenvectors of A?’

It turns out that by collecting the information accumulated in the
course of the Jacobi iteration, it is fairly easy to calculate the eigenvec-
tors of A. We begin by noting that if M is an orthogonal matrix such
that MTAM = D, where D is diagonal, then the diagonal elements of
D are the eigenvalues of A, and the columns of M are the corresponding
eigenvectors of A.

In the course of the Jacobi iteration (be it classical or serial), we
have constructed the plane rotations R(pjqj)(ϕj), j = 1, 2, . . . , k. Thus,
an approximation M (k) to the orthogonal matrix M can be obtained
by considering the product of these rotation matrices: initially, we put
M (0) = I and then we apply the column transformation R(pjqj)(ϕj) at
each step j = 1, 2, . . . , k. This corresponds to multiplying M (j−1) on
the right by R(pjqj)(ϕj) for j = 1, 2, . . . , k, and leads to the orthogonal
matrix

M (k) = R(p1q1)(ϕ1) . . . R(pkqk)(ϕk)

which represents the required approximation to the orthogonal matrix
M . The columns of M (k) will be the desired approximate eigenvectors
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of A corresponding to the approximate eigenvalues which appear along
the diagonal of A(k).

The Jacobi method usually converges in a reasonable number of itera-
tions, and is a satisfactory method for small or moderate-sized matrices.
However, there are many problems, particularly in the area of numeri-
cal solution of partial differential equations, which give rise to very large
matrices that are sparse, with most of the elements being zero. A further
consideration is that in many practical situations one does not need to
compute all the eigenvalues. It is much more common to require a few of
the largest eigenvalues and corresponding eigenvectors, or perhaps a few
of the smallest. Jacobi’s method is not suitable for such problems, as
it always produces all the eigenvalues, and will not preserve the sparse
structure of a matrix during the course of the iteration. For example, it
is easy to see that if Jacobi’s method is applied to a symmetric tridiago-
nal matrix, then at the end of one sweep all (but two) of the elements of
the matrix will in general be nonzero and, although still symmetric, the
transformed matrix is no longer tridiagonal. Later on in this chapter we
shall consider numerical algorithms for computing selected eigenvalues
of a matrix. Thus, as an overture to what will follow, we now outline a
‘rough and ready’ technique for locating the eigenvalues.

5.4 The Gerschgorin theorems

Gerschgorin’s Theorem1 provides a very simple way of determining a
region that contains the eigenvalues of a matrix. It is very general, and
does not assume that the matrix is symmetric; in fact we shall allow
the elements of a square matrix of order n to be complex and write
A ∈ C

n×n to express this fact.

Definition 5.5 Suppose that n ≥ 2 and A ∈ C
n×n. The Gerschgorin

discs Di, i = 1, 2, . . . , n, of the matrix A are defined as the closed
circular regions

Di = {z ∈ C: |z − aii| ≤ Ri } (5.17)

in the complex plane, where

Ri =
n∑

j=1
j �=i

|aij | (5.18)

is the radius of Di.
1 After S.A. Gerschgorin; see the historical survey of Seiji Fujino and Joachim
Fischer, Über S.A. Gerschgorin (1901–1933) [German: About S.A. Gershgorin
(1901–1933)], GAMM Mitt. Ges. Angew. Math. Mech. 21, no. 1, 15–19, 1998.
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Theorem 5.4 (Gerschgorin’s Theorem) Let n ≥ 2 and A ∈ C
n×n.

All eigenvalues of the matrix A lie in the region D =
⋃n
i=1 Di, where Di,

i = 1, 2, . . . , n, are the Gerschgorin discs of A defined by (5.17), (5.18).

Proof Suppose that λ ∈ C and x ∈ C
n \ {0} are an eigenvalue and the

corresponding eigenvector of A, so that
n∑
j=1

aijxj = λxi , i = 1, 2, . . . , n . (5.19)

Suppose that xk, with k ∈ {1, 2, . . . , n}, is the component of x which
has largest modulus, or one of those components if more than one have
the same modulus. We note in passing that xk �= 0, given that x �= 0;
also,

|xj | ≤ |xk| , j = 1, 2, . . . , n . (5.20)

This means that

|λ − akk| |xk| = |λxk − akk xk|

=

∣∣∣∣∣
n∑
j=1

akjxj − akkxk

∣∣∣∣∣
=

∣∣∣∣∣∣∣
n∑

j=1
j �=k

akjxj

∣∣∣∣∣∣∣
≤ |xk|Rk , (5.21)

which, on division by |xk|, shows that λ lies in the Gerschgorin disc Dk
of radius Rk centred at akk. Hence, λ ∈ D =

⋃n
i=1 Di.

Theorem 5.5 (Gerschgorin’s Second Theorem) Let n ≥ 2. Sup-
pose that 1 ≤ p ≤ n − 1 and that the Gerschgorin discs of the matrix
A ∈ C

n×n can be divided into two disjoint subsets D(p) and D(q), con-
taining p and q = n − p discs respectively. Then, the union of the discs
in D(p) contains p of the eigenvalues, and the union of the discs in D(q)

contains n − p eigenvalues. In particular, if one disc is disjoint from
all the others, it contains exactly one eigenvalue, and if all the discs are
disjoint then each disc contains exactly one eigenvalue.

Proof We shall use a so-called homotopy (or continuation) argument.
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For 0 ≤ ε ≤ 1, we consider the matrix B(ε) = (bij(ε)) ∈ C
n×n, where

bij(ε) =
{

aii if i = j ,

εaij if i �= j .
(5.22)

Then, B(1) = A, and B(0) is the diagonal matrix whose diagonal el-
ements coincide with those of A. Each of the eigenvalues of B(0) is
therefore the centre of one of the Gerschgorin discs of A; thus exactly p

of the eigenvalues of B(0) lie in the union of the discs in D(p). Now, the
eigenvalues of B(ε) are the zeros of its characteristic polynomial, which
is a polynomial whose coefficients are continuous functions of ε; hence
the zeros of this polynomial are also continuous functions of ε. Thus as
ε increases from 0 to 1 the eigenvalues of B(ε) move along continuous
paths in the complex plane, and at the same time the radii of the Ger-
schgorin discs increase from 0 to the radii of the Gerschgorin discs of
A. Since p of the eigenvalues lie in the union of the discs in D(p) when
ε = 0, and these discs are disjoint from all of the discs in D(q), these p

eigenvalues must still lie in the union of the discs in D(p) when ε = 1,
and the theorem is proved.

The same proof evidently still applies when the discs can be divided
into any number of disjoint subsets.

Example 5.4 Consider the matrix

A =




4.00 0.20 −0.10 0.10
0.20 −1.00 −0.10 0.05

−0.10 −0.10 3.00 0.10
0.10 0.05 0.10 −3.00


 . (5.23)

Figure 5.1 shows, as solid circles, the Gerschgorin discs for this matrix;
for instance, one of the discs has centre at 4.00 and radius 0.40. The
discs are clearly disjoint, so that each disc contains one eigenvalue of
the matrix. The significance of the dotted circles will be explained in our
next example.

Example 5.5 Let us consider the matrix A defined by (5.23), and then
transform it into B = KAK−1, where K ∈ R

4×4 is the same as the
identity matrix except that k22 = κ > 0.

This transformation has the effect of multiplying the elements in row 2
by κ, and multiplying the elements in column 2 by 1/κ; the diagonal
element a22 thus remains unaltered. A small value of κ then means that
the second disc of B is smaller than the second disc of A, but the other
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Fig. 5.1. Gerschgorin discs in the complex plane for the matrix A defined in
(5.23) (solid circles) and for B = KAK−1 (dotted circles). The numbers along
the real axis denote the first coordinate of the centre point of each circle (the
second coordinate being zero in each case).

discs grow larger. The dotted discs in Figure 5.1 are for the matrix B

with κ = 1/23. For this value the other discs are still just disjoint from
the disc centred at −1.00; the disc with centre at 4.00 almost touches
the disc with centre at −1.00. The disc with centre −1.00 has radius
0.014, and is too small to be visible in the figure. The eigenvalue in this
disc is −1.009 to three decimal digits. The same procedure can be used
to reduce the size of each of the discs in turn. �

This idea is formalised in the next theorem.

Theorem 5.6 Let n ≥ 2, and suppose that in the matrix A ∈ C
n×n all

the off-diagonal elements are smaller in absolute value than ε, so that
|aij | < ε, for all i, j ∈ {1, 2, . . . , n} with i �= j. Suppose also that for
a particular integer r ∈ {1, 2, . . . , n} the diagonal element arr is distant
δ from all the other diagonal elements, so that |arr − aii| > δ, for all i
such that i �= r. Then, provided that

ε <
δ

2(n − 1)
, (5.24)



5.4 The Gerschgorin theorems 149

there is an eigenvalue λ of A such that

|λ − arr| < 2(n − 1)ε2/δ . (5.25)

Proof We apply the similarity transformation

A ∈ C
n×n �→ A′ = K AK−1 ∈ C

n×n ,

where K ∈ R
n×n is the same as the identity matrix, except that the

diagonal element in row r is chosen to be krr = κ > 0. This has the
effect of multiplying the off-diagonal elements of row r by κ, and the
element in column r of row i, where i �= r, by 1/κ. The Gerschgorin
disc from row r then has centre arr and radius not exceeding κ(n− 1)ε,
and the disc corresponding to row i �= r has centre aii and radius not
exceeding (n − 2)ε + ε/κ.

We now want to reduce the size of disc r by choosing a small value of
κ, while keeping it disjoint from the rest. This is easily done by choosing
κ = 2ε/δ. The radius of disc r does not exceed 2(n − 1)ε2/δ, and the
radius of disc i �= r does not exceed (n − 2)ε + 1

2δ. The sum of these
radii therefore satisfies

Rr + Ri ≤ 2(n − 1)ε2/δ + (n − 2)ε + 1
2δ

< ε + (n − 2)ε + 1
2δ

< δ , (5.26)

where we have used the given condition (5.24) twice. As the centres arr
and aii of these discs are distant more than δ from each other, (5.26)
shows that the two discs are disjoint, and the required result is proved.

Theorem 5.6 is sufficient to show that for a matrix satisfying its hy-
potheses we can find a Gerschgorin disc whose radius is of order ε2

provided that ε is sufficiently small. It also indicates that the spacing
between the diagonal elements is important.

In particular, Theorem 5.6 applies to the matrix A(k) which results af-
ter k iterations of the Jacobi method. If at that stage all the off-diagonal
elements have magnitude less than ε then there is one eigenvalue in each
of the intervals [a(k)

ii −(n−1)ε, a(k)
ii +(n−1)ε], provided that these inter-

vals are disjoint; this follows from Theorem 5.5. If ε is sufficiently small
compared with the distances between the diagonal elements of A(k),
Theorem 5.6 may be used to give closer bounds on the eigenvalues.
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We close this section with some comments on the convergence of the
classical Jacobi iteration. According to the Cauchy–Schwarz inequality,

 n∑
i,j=1
i�=j

|a(k)
ij |




2

≤
n∑

i,j=1
i�=j

12
n∑

i,j=1
i�=j

|a(k)
ij |2 = n(n − 1)

n∑
i,j=1,i 
=j

|a(k)
ij |2 .

Therefore, also,
 n

max
i=1

n∑
j=1
j �=i

|a(k)
ij |




2

≤ n(n − 1)
n∑

i,j=1
i�=j

|a(k)
ij |2 ,

so (5.12) implies that

lim
k→∞

n
max
i=1

n∑
j=1
j �=i

|a(k)
ij | = 0 .

In other words, the radii of the Gerschgorin discs for the matrices in the
sequence (A(k)) converge to 0 as k → ∞. As A(k) and A have identical
eigenvalues for all k, it follows from Theorems 5.4 and 5.5 that the set
of limiting diagonal entries {limk→∞ a

(k)
11 , . . . , limk→∞ a

(k)
nn} delivered by

the Jacobi iteration is equal to the set of eigenvalues of A. This holds
irrespective of the spacing between the diagonal entries.

5.5 Householder’s method

The general method for finding the eigenvalues of a real symmetric ma-
trix begins by applying an orthogonal transformation to reduce it to a
tridiagonal matrix. This can be done in a finite number of steps by using
Householder matrices.

Definition 5.6 Given a vector v ∈ R
n
∗ , the correspondingHouseholder

matrix H = H(v) of order n is defined by

H = I − 2
vTv

vvT,

where I is the identity matrix of order n.

Clearly, for any vector x ∈ R
n, we have

Hx = x− 2
vTx

vTv
v ,

and hence the vectors Hx, x and v are coplanar. In particular, if x ∈ R
n

and vTx = 0 then Hx = x, and therefore the (n − 1)-dimensional
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H

v

x

Hx

Fig. 5.2. Action of the Householder reflector H: x �→ Hx, corresponding to
v ∈ R

n
∗ , on a vector x ∈ R

n. Hx is the reflection of x in the hyperplane H
perpendicular to v.

hyperplane H consisting of all vectors x that are perpendicular to v in
R
n is invariant under the mapping x �→ Hx. Finally, for any x ∈ R

n,

vTHx = −vTx .

Hence, if the angle between x and v is denoted by ϕ, then the angle
between v and Hx is equal to π+ϕ. We conclude from these observations
that the vector Hx is the reflection of x in the hyperplane H. For this
reason, the mapping x �→ Hx is frequently referred to as Householder
reflector, corresponding to the vector v ∈ R

n
∗ (see Figure 5.2).

Lemma 5.2 Every Householder matrix is symmetric and orthogonal.

Proof As IT = I, (vvT)T = (vT)TvT = vvT, and vTv is a (positive
real) number, the symmetry of H follows. The orthogonality of H is a
consequence of the identity

HTH = HHT = H2 = I − 4
vTv

vvT +
4

(vTv)2
(vvT)(vvT) = I ,

since (vvT)(vvT) = v(vTv)vT = (vTv)vvT by the associativity of ma-
trix multiplication.
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Lemma 5.3 Let 1 ≤ k < n and suppose that Hk is a k× k Householder
matrix. Then, the matrix H ∈ R

n×n, written in partitioned form as

H =
(

In−k 0
0T Hk

)

where In−k is the identity matrix of order n− k and 0 is the (n− k)× k

zero matrix, is also a Householder matrix.

The proof of this lemma is straightforward and is left as an exercise.
(See Exercise 1.)

Lemma 5.4 Given any vector x ∈ R
n
∗ , there exists a Householder matrix

H ∈ R
n×n
sym such that all elements of the vector Hx are zero, except the

first; i.e., Hx is a nonzero multiple of e1, the first column of the identity
matrix.

In geometrical terms this result can be rephrased by saying that for
any vector x ∈ R

n
∗ there exists an (n − 1)-dimensional hyperplane H

passing through the origin in R
n such that the reflection Hx of x in H is

equal to a nonzero multiple of e1. To find H it suffices to identify a vector
v ∈ R

n
∗ normal to H. Since H is unaffected by rescaling v (see Definition

5.6), the length of v is immaterial. As noted in the discussion following
Definition 5.6, the vectors Hx, x and v are coplanar. Therefore, we
shall seek v ∈ R

n
∗ as a suitable linear combination of x and e1.

Proof of lemma We seek H = I − [2/(vTv)]vvT with v = x + ce1,
where c is a nonzero real number to be determined. Hence,

vTx = xTx + cβ ,

vTv = xTx + 2cβ + c2 ,

where β = eT
1 x is the first entry of x. A simple manipulation then shows

that

Hx = x− 2
vTv

v(vTx) =
(c2 − xTx)x− 2c(xTx + cβ)e1

xTx + 2cβ + c2
.

Thus, Hx will be a multiple of e1 provided that we choose c so that
c2 = xTx. Also, to avoid division by 0, we need to ensure that xTx +
2cβ + c2 �= 0. To do so, note that c2 ≥ β2; therefore

xTx + 2cβ + c2 ≥ (β + c)2 �= 0 ,
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provided that β + c �= 0, which can be ensured by selecting the appro-
priate sign for c, that is, by defining

c =

{
(sign β)

√
xTx when β �= 0 ,√

xTx when β = 0 .

With this choice of c, we have Hx = −c e1, as required.

We now show how Householder matrices can be used to reduce a given
matrix to tridiagonal form.

Theorem 5.7 Given that A ∈ R
n×n
sym and n ≥ 3, there exists a matrix

Qn ∈ R
n×n
sym , a product of n − 2 Householder matrices H(n,k) ∈ R

n×n
sym ,

k = 2, . . . , n − 1, given by

Qn = H(n,n−1)H(n,n−2) . . . H(n,2)

such that QT
nAQn = Tn is tridiagonal; the matrix Qn is orthogonal.

Proof The proof of the theorem will proceed by induction. Before em-
barking on this, we make some preparatory observations which highlight
the key ideas in the proof.

Consider the matrix A ∈ R
n×n
sym , partitioned by its first row and column

in the form

A =
(

α bT

b C

)
,

where α ∈ R, b ∈ R
n−1 and C ∈ R

(n−1)×(n−1)
sym , and define

En1 = {v ∈ R
n: v = (λ, 0, . . . , 0)T for some λ ∈ R} .

If b happens to belong to R
n−1
∗ , then, by Lemma 5.4, there exists an

(n − 1) × (n − 1) Householder matrix Hn−1 such that each element of
Hn−1b, except the first, is equal to 0. If, on the other hand, b = 0, then
Hn−1b = 0, trivially. Either way, Hn−1b ∈ En−1

1 .
Let us extend the Householder matrix Hn−1 ∈ R

(n−1)×(n−1)
sym , using

Lemma 5.3 with k = n − 1, to a Householder matrix H(n,n−1) ∈ R
n×n
sym

by defining the (1, 1)-entry of H(n,n−1) as 1 and choosing the remaining
entries in the first row and first column of H(n,n−1) as 0. Then,

HT
(n,n−1)AH(n,n−1) =

(
1 0T

0 HT
n−1

)(
α bT

b C

)(
1 0T

0 Hn−1

)

=
(

α dT

d D

)
, (5.27)
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where

d = HT
n−1b = Hn−1b ∈ En−1

1 and D = HT
n−1C Hn−1 ∈ R

(n−1)×(n−1)
sym .

As d ∈ En−1
1 , the first row and first column of HT

(n,n−1)AH(n,n−1) are of
the desired form. It remains to transform the submatrix D to tridiagonal
form. This will be achieved by proceeding inductively.

If n = 3, then the 3 × 3 matrix HT
(n,n−1)AH(n,n−1) is automatically

tridiagonal since d ∈ E2
1 , and we complete the proof by taking Q3 =

H(3,2). We note in passing that if f ∈ E3
1 , then

QT
3 f = HT

(3,2)f = H(3,2)f ∈ E3
1 ,

as the (1, 1)-entry of H(3,2) is 1 and the remaining entries in its first
column are all 0.

Let us suppose that n ≥ 4 and A ∈ R
n×n
sym . Our inductive hypothesis

is that the statement of the theorem has already been established for
any real symmetric matrix of order n− 1, i.e., D ∈ R

(n−1)×(n−1)
sym can be

transformed into tridiagonal form:

QT
n−1DQn−1 = Tn−1,

where Qn−1 ∈ R
(n−1)×(n−1) is an orthogonal matrix that is a product

of n − 3 Householder matrices, each of size (n − 1) × (n − 1) –

Qn−1 = H(n−1,n−2) . . . H(n−1,2) −

and QT
n−1f ∈ En−1

1 for any vector f ∈ En−1
1 . This inductive hypothesis

has already been verified above for 3 × 3 real symmetric matrices.
We now extend each of the (n − 1) × (n − 1) matrices H(n−1,k), for

k = 2, . . . , n− 2, to n×n Householder matrices H(n,k), k = 2, . . . , n− 2,
respectively, as in Lemma 5.3, and define

Qn = H(n,n−1)H(n,n−2) . . . H(n,2) .

Then, by (5.27),

QT
nAQn =

(
1 0T

0 QT
n−1

)(
α dT

d D

)(
1 0T

0 Qn−1

)

=
(

α dTQn−1

QT
n−1d Tn−1

)
.

As d ∈ En−1
1 , it follows from our inductive hypothesis that QT

n−1d also
belongs to En−1

1 , and therefore the last matrix is tridiagonal. As Qn is
a product of n − 2 Householder matrices, each of size n × n and each
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orthogonal, Qn ∈ R
n×n is itself orthogonal. Moreover, for any f ∈ En1

we have QT
n f ∈ En1 , since the (1, 1)-entry of Qn is 1 and the remaining

entries in the first column of Qn are 0. This concludes the inductive
step, and completes the proof.

The recursive transformation of a symmetric matrix to tridiagonal
form outlined in the proof of Theorem 5.7 is called Householder’s
method. In implementing this method in practice it is important to
carry out the transformations efficiently. Counting the arithmetic op-
erations involved is straightforward but tedious, and shows that the
complete reduction requires approximately 1

3n
3 multiplications, for a

moderately large value of n.

Example 5.6 In order to illustrate Householder’s method, we return
to the matrix A defined in (5.16). The first stage uses the Householder
matrix defined by the vector

v = (0.000, 4.162, 2.000, 1.000, 2.000)T . (5.28)

The result of the transformation is the matrix


4.000 −3.162 0.000 0.000 0.000
−3.162 5.300 1.232 −0.332 0.284

0.000 1.232 1.653 3.312 0.275
0.000 −0.332 3.312 5.149 1.123
0.000 0.284 0.275 1.123 −3.102


 .

The leading element of the matrix is unchanged, and the first row and
column have tridiagonal structure.

The second stage uses the Householder matrix with the vector

v = (0.000, 0.000, 2.540, −0.332, 0.284)T (5.29)

and gives the new matrix


4.000 −3.162 0.000 0.000 0.000
−3.162 5.300 −1.308 0.000 0.000

0.000 −1.308 0.057 −2.166 0.792
0.000 0.000 −2.166 6.610 0.420
0.000 0.000 0.792 0.420 −2.967


 .

This time the leading 2 × 2 minor is unaltered, and the first two rows
and columns have tridiagonal structure.

The final stage uses the Householder matrix with vector

v = (0.000, 0.000, 0.000, −4.471, 0.792)T (5.30)
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and gives the tridiagonal matrix


4.000 −3.162 0.000 0.000 0.000
−3.162 5.300 −1.308 0.000 0.000

0.000 −1.308 0.057 2.306 0.000
0.000 0.000 2.306 5.208 −3.411
0.000 0.000 0.000 −3.411 −1.565


 . (5.31)

The numerical values are quoted here to three decimal digits, for sim-
plicity. �

Having shown how to transform a symmetric matrix into tridiagonal
form, we can now consider the problem of determining the eigenvalues
of a tridiagonal matrix.

5.6 Eigenvalues of a tridiagonal matrix

Before developing a numerical algorithm for calculating the eigenvalues
and the eigenvectors of a symmetric tridiagonal matrix, let us spend
some time exploring the location of the eigenvalues. The main result of
this section is the so-called Sturm sequence property,1 stated in Theorem
5.9, which enables us to specify the number of eigenvalues of a symmetric
tridiagonal matrix which exceed a given real number ϑ. The proof of
the Sturm sequence property is based on Cauchy’s Interlace Theorem
which is of independent interest, and proving the latter is our first task.

To simplify the notation we now write the symmetric tridiagonal ma-
trix in the form

T =




a1 b2

b2 a2 b3

b3 a3 b4

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

bn−1 an−1 bn
bn an




.

1 Jacques Charles François Sturm (22 September 1803, Geneva, Helvetia (now
Switzerland) – 18 December 1855, Paris, France). The results discussed here
are based on Sturm’s paper ‘Mémoire sur la résolution des équations numériques’,
published in Mémoires présentés par divers savants étrangers à l’Académie royale
des sciences, section Sc. math. phys., 6, 273–318, 1835, concerning the number
of roots of a polynomial in an interval. In 1826 Sturm made the first accurate
determination of the velocity of sound in water working with the Swiss engineer
Daniel Colladon. In 1840 Sturm succeeded Poisson in the chair of mechanics in
the Faculté des Sciences in Paris.
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The determinants of the successive principal minors of a matrix of this
form can easily be calculated by recurrence. Defining pr(λ) to be the
determinant of the leading principal minor of order r of T − λ I, we see
that

p1(λ) = a1 − λ ,

p2(λ) = (a2 − λ)(a1 − λ) − b2
2 .

Expanding pr(λ) in terms of the elements of the last row, and then in
terms of the last column, we obtain the relation

pr(λ) = (ar − λ)pr−1(λ) − b2
rpr−2(λ) , r = 2, 3, . . . , n ,

with the convention that

p0(λ) ≡ 1 .

In the rest of this section we shall assume that all the off-diagonal
elements bi are nonzero. For suppose that bk = 0 for some k in the
set {2, 3, . . . , n}; then, the eigenvalues of the matrix T comprise the
eigenvalues of the matrix consisting of the first k− 1 rows and columns,
together with the eigenvalues of the matrix consisting of the last n−k+1
rows and columns. These two problems become separated and can be
treated independently; if several of the off-diagonal elements are zero,
the matrix can be partitioned into a number of smaller matrices which
can then be dealt with independently.

Theorem 5.8 (Cauchy’s Interlace Theorem) Let n ≥ 3. The roots
of pr separate those of pr+1, for r = 1, 2, . . . , n − 1; i.e., between two
consecutive roots of pr+1 there is exactly one root of the polynomial pr,
r = 1, 2, . . . , n − 1.

Proof The proof is by induction. It is trivial to show that the property
holds for r = 1: the two roots

1
2

[
a1 + a2 ±

√
(a1 − a2)2 + 4b2

2

]

of p2 are separated by a1, the only root of the linear polynomial p1.
Suppose that the statement is true when r = i − 1, 2 ≤ i ≤ n − 1,

so that the roots of pi−1 separate those of pi. On denoting by α and β

two consecutive roots of pi, the inductive hypothesis implies that pi−1

has exactly one root between α and β, which means that pi−1(α) and
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pi−1(β) have opposite signs. Now,

pi+1(λ) = (ai+1 − λ)pi(λ) − b2
i+1pi−1(λ) ,

so that, as α and β are roots of pi, it follows that pi+1(α) and pi+1(β)
also have opposite signs. Hence pi+1 has at least one root between α

and β. Choosing α and β to be each pair of consecutive roots of pi in
turn we have therefore located i − 1 roots of pi+1.

Next choose α to be the algebraically smallest root of pi. It is easy to
see that each of the polynomials p1, p2, . . . , pn tends to +∞ as λ → −∞.
By the inductive hypothesis, pi−1 has no roots smaller than α, so pi−1(α)
is positive; hence from the recurrence relation pi+1(α) is negative, and
therefore pi+1 must have a root smaller than α. A similar argument
shows that pi+1 has a root greater than the largest root of pi, so that
we have located all the i + 1 roots of pi+1. There is exactly one root
of pi between each pair of consecutive roots of pi+1, and the interlacing
property follows.

We have shown in particular that all the roots of each pr are distinct.
Moreover pi(λ) and pi−1(λ) cannot both vanish for the same λ, for if
this were to happen the recurrence relation would show that this value
of λ is a root of pr for all values of r ∈ {0, 1, . . . , n}; but p0 evidently
never vanishes.

Theorem 5.9 (The Sturm sequence property) Let us suppose that
ϑ ∈ R and consider the sequence pi(ϑ), i = 0, 1, . . . , n. The number of
agreements in sign between consecutive members of the sequence is the
same as the number of eigenvalues of the matrix T which are strictly
greater than ϑ.

Proof Given that λ ∈ R and 1 ≤ j ≤ n, we write sj(λ) for the number
of agreements in sign in the sequence

p0(λ) , p1(λ) , . . . , pj(λ) ,

and gj(λ) for the number of roots of the polynomial pj which are strictly
greater than λ.

It is trivial to see that s1(ϑ) = g1(ϑ). The proof now proceeds by
induction. Let us suppose that 2 ≤ k ≤ n and adopt the inductive
hypothesis that sk−1(ϑ) = gk−1(ϑ); we shall prove that sk(ϑ) = gk(ϑ).

Under our hypothesis, either sk(ϑ) = sk−1(ϑ)+1, if pk(ϑ) and pk−1(ϑ)
have the same sign, or sk(ϑ) = sk−1(ϑ) if they have opposite sign. Sup-
pose that ϑ lies in the interval between the two consecutive roots α and
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β of pk−1. Then, there is exactly one root of pk between α and β; de-
note this root by ϕ. As we saw in the proof of the previous theorem
pk(λ) is positive when λ is large and negative, and the sign of pk(λ) is
determined by the number of roots of pk which are less than λ. Hence
if ϑ < ϕ both pk and pk−1 have the same number of roots less than ϑ,
so that pk(ϑ) and pk−1(ϑ) have the same sign, and sk(ϑ) = sk−1(ϑ)+ 1.
Also if pk and pk−1 have the same number of roots less than ϑ, then
pk must have one more root which is greater than ϑ; this means that
gk(ϑ) = gk−1(ϑ) + 1. Hence sk(ϑ) = gk(ϑ). A similar argument shows
that sk(ϑ) = gk(ϑ) in the alternative situation where ϑ > ϕ. It is also
a simple matter to modify the argument slightly for the cases where ϑ

is less than the smallest root of pk−1, or greater than the largest root of
pk−1, and so the inductive step is complete.

The theorem and proof do not allow for any of the members of the
sequence being zero, in which case the sign becomes undefined. A more
careful analysis is tedious but not difficult; it shows that the theorem
still holds if we adopt the convention that when pj(ϑ) is zero it is given
the same sign as pj−1(ϑ). As we have already seen, two consecutive
members of the sequence cannot both be zero.

Our next example will illustrate the application of the Sturm sequence
property.

Example 5.7 Determine the second largest eigenvalue of the matrix

A =




3 1 0 0
1 −1 2 0
0 2 1 1
0 0 1 1


 . (5.32)

If the eigenvalues are λj , where λ1 > λ2 > λ3 > λ4, we wish to find λ2.
Now, it is easy to see from Theorem 5.5 that all the eigenvalues lie in
the interval [−4, 4]. We take the midpoint of this interval, and evaluate
the Sturm sequence with ϑ = 0, giving

p0(0) = 1 , p1(0) = 3 , p2(0) = −4 , p3(0) = −16 , p4(0) = −12 .

In this sequence there are three agreements of sign:

(1, 3) , (−4,−16) and (−16,−12) .

Hence s4(0) = 3, and the matrix has three eigenvalues greater than
0; this means that λ2 must lie in the right-hand half of the interval
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[−4, 4], that is, in [0, 4]. We construct the Sturm sequence for ϑ = 2,
the midpoint of the interval, giving

p0(2) = 1 , p1(2) = 1 , p2(2) = −4 , p3(2) = −0 , p4(2) = 4 .

Notice that here p3(2) is zero, and is given the negative sign to agree
with p2(2). The number of agreements in sign here is two, so two of the
eigenvalues are greater than 2, and λ2 must lie in [2, 4], the right-hand
half of the interval [0, 4]. For ϑ = 3 we obtain the sequence

1 , +0 , −1 , 2 , −3 ,

with only one agreement of sign, so this time λ2 must lie in the left-hand
half [2, 3] of the interval [2, 4], and we repeat the process, taking ϑ = 5

2 ,
the midpoint of [2, 3]. This time the sequence is

1 ,
1
2
, −11

4
,

17
8

, − 7
16

,

with one agreement in sign, showing that λ2 < 2.5.
The process of bisection can be repeated as many times as required to

locate the eigenvalue to a given accuracy. After 13 stages we find that
λ2 = 2.450 correct to three decimal digits. �
This method is very similar to the usual bisection process for finding
a solution of f(x) = 0, beginning with an interval [a, b] such that f(a)
and f(b) have opposite signs. A great advantage of the Sturm sequence
method is that it not only determines the eigenvalue, but also indicates
which eigenvalue it is. If we used the Jacobi method of Section 5.3 we
would have to determine all the eigenvalues, sort them into order, and
then choose the second largest eigenvalue as λ2.

The Sturm sequence method will also determine how many eigenvalues
of a matrix lie in a given interval (α, β); all that we need is to construct
the Sturm sequences (pj(α))j=0,1,...,n and (pj(β))j=0,1,...,n; then, the re-
quired number of eigenvalues is sn(α) − sn(β).

It is very important to calculate the sequence pj(ϑ) directly from the
recurrence relation. For instance, in Example 5.7, with ϑ = 2.445 we
obtain

p0(2.445) = 1 ,

p1(2.445) = 3 − 2.445 = 0.555 ,

p2(2.445) = (−1 − 2.445) × 0.555 − 1 × 1 = −2.9120 ,

p3(2.445) = (1 − 2.445) × −2.9120 − 4 × 0.555 = 1.9878 ,

p4(2.445) = (1 − 2.445) × 1.9878 − 1 × −2.9120 = 0.0396 .
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The alternative, to construct explicit forms for the polynomials pj(λ),
j = 0, 1, . . . , n, and then evaluate pj(ϑ) by inserting the value of λ = ϑ

into each of the polynomials pj(λ), will lead to the construction of the
explicit form of the characteristic polynomial of the matrix, which is
pn(λ), and we have already seen that this is affected disastrously by
rounding errors. The calculation by direct use of the recurrence relation
is perfectly satisfactory.

Example 5.8 As a second example, we return to the matrix A in (5.16),
which has been transformed to the tridiagonal form (5.31), to determine
the largest eigenvalue.

Table 5.2. Bisection process for the largest eigenvalue. In the table k

denotes the iteration number, ϑk the kth iterate approximating the
unknown eigenvalue λ1, and s4(ϑk) signifies the number of sign

agreements in the Sturm sequence p0(ϑk), . . . , p4(ϑk).

k ϑk s4(ϑk)

1 0.000 3
2 5.463 2
3 8.194 0
4 6.829 2
5 7.511 1
6 7.853 1
7 8.024 1
8 8.109 0
9 8.066 1

10 8.088 1
11 8.098 0
12 8.093 1
13 8.096 0
14 8.094 0
15 8.094 1

Table 5.2 shows the result of the bisection process, using the Sturm
sequence. The ∞-norm of the tridiagonal matrix is 10.926, so the pro-
cess begins with the interval [−10.926, 10.926].1 The largest eigenvalue
1 To explain this choice, let us note that if λ ∈ C is an eigenvalue of A ∈ Cn×n and

x ∈ Cn \ {0} is the corresponding eigenvector, then |λ| ‖x‖ = ‖λx‖ = ‖Ax‖ ≤
‖A‖ ‖x‖; i.e., |λ| ≤ ‖A‖, for any subordinate matrix norm ‖ · ‖ and any eigenvalue
λ of A.
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is 8.094, to three decimal digits, agreeing with the result of Jacobi’s
method, in Section 5.3. This table also shows how some savings are
possible when all the eigenvalues are required. We see from the table
that use of ϑ = 7.511 gives 1 agreement in sign, while ϑ = 6.829 gives 2
agreements in sign. The bisection process for the second largest eigen-
value can therefore begin with the interval [6.829, 7.511]. �

The method of bisection may appear rather crude, but it has the great
advantage of guaranteed success, and is very little affected by rounding
errors. Moreover, the amount of work involved is not large. If we have
calculated the squares of the off-diagonal entries, b2

r, of the matrix T in
advance, each computation of all members of the sequence requires about
2n multiplications. If the bisection process is continued for 40 stages,
the eigenvalue will be determined to about nine significant digits, and
if we require to calculate m of the eigenvalues to this accuracy, we shall
need about 80mn multiplications. If m is a good deal smaller than n,
the order of the matrix, this is likely to be a great deal smaller than the
work involved in the process of reduction to tridiagonal form, which, as
we have seen, is about 1

3n
3 multiplications. In most practical problems

it is the initial Householder reduction to tridiagonal form which accounts
for most of the computational work.

5.7 The QR algorithm

In this section we discuss briefly the QR algorithm, an alternative method
for determining the eigenvalues of a tridiagonal matrix. In principle it
could be applied to a full matrix, but it is more efficient to use the
Householder method to reduce the matrix to tridiagonal form first. The
basis of the method is the QR factorisation of the matrix which we
have already encountered in Chapter 2, in the solution of least squares
problems. In contrast with Section 2.9, however, where we were con-
cerned with the solution of least squares problems for rectangular ma-
trices A ∈ R

m×n, here the focus is on eigenvalue problems for symmetric
tridiagonal matrices A ∈ R

n×n; we shall therefore revisit the derivation
of the QR factorisation by adopting a slightly different approach from
the one proposed in Section 2.9.

5.7.1 The QR factorisation revisited

Suppose that n ≥ 3 and A ∈ R
n×n is a symmetric tridiagonal matrix.

We first show how to construct an orthogonal matrix Q ∈ R
n×n and
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an upper triangular matrix R ∈ R
n×n such that A = QR; the prob-

lem is similar to the LU factorisation used in solving systems of linear
equations, but here we have an orthogonal matrix Q instead of a lower
triangular matrix L.

We construct the matrix Q as a product of plane rotation matrices
Rp p+1(ϕ) ∈ R

n×n (see Definition 5.2), with a suitably chosen ϕ. In
order to explain what is meant here by ‘suitably chosen’, we note that
in the product

B = Rp p+1(ϕ)A (5.33)

the element bp+1 p is easily found to be

bp+1 p = −s app + c ap+1 p ,

where s = sinϕ and c = cosϕ. We can make bp+1 p = 0 by choosing

s =
ap+1 p

ρ
, c =

app
ρ

, ρ = (a2
pp + a2

p+1 p)
1/2 . (5.34)

We note in passing that

bpp = capp + sap+1 p ,

bp p+1 = cap p+1 + sap+1 p+1 ,

bp+1 p+1 = −sap p+1 + cap+1 p+1 .

The remaining elements of B are the same as those of A.
To summarise the important points, upon multiplying the symmetric

tridiagonal matrix A on the left by Rp p+1(ϕ), where c = cosϕ and
s = sinϕ in Rp p+1(ϕ) are chosen as indicated in (5.34), we obtain a
tridiagonal matrix B = (bij) ∈ R

n×n such that bp+1 p = 0.
After this brief preparation, we embark on the description of the QR

factorisation. Let us suppose that we successively multiply A on the left
by the n − 1 plane rotation matrices,

Q1 = R12(ϕ1) , Q2 = R23(ϕ2) , . . . , Qn−1 = Rn−1n(ϕn−1) ,

with ϕ1, ϕ2, . . . , ϕn−1 selected according to (5.34); more precisely,

for p = 1, 2, . . . , n − 1,

ϕp is chosen so as to set the (p + 1, p)-entry of Qp . . . Q1A

to zero .

Given that the elements below the diagonal of the matrix

Qp−1 . . . Q1A , 2 ≤ p ≤ n − 1 ,
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which are already equal to zero, remain zero upon multiplication by the
next rotation matrix Qp in the sequence, we deduce that, after successive
multiplications of A on the left by Q1, Q2, . . . , Qn−1, the matrix

Qn−1 Qn−2 . . . Q1 A = R , (5.35)

is upper triangular. In fact, since A is tridiagonal, R is tridiagonal
and upper triangular; consequently, R is bidiagonal in the sense that
Rij = 0 if i �= j, j − 1.

As the matrices Qp = Rp p+1(ϕp), p = 1, 2, . . . , n − 1, are orthog-
onal, and therefore QT

pQp = I, on multiplying (5.35) on the left by
QT

1 QT
2 . . . QT

n−1, we find that

A = QR ,

where

Q = QT
1 QT

2 . . . QT
n−1

is an orthogonal matrix (as it is a product of orthogonal matrices). The
next subsection describes the QR algorithm, based on the QR factori-
sation, for the numerical solution of the eigenvalue problem (5.1) where
the matrix A ∈ R

n×n is symmetric and tridiagonal.

5.7.2 The definition of the QR algorithm

Suppose that A ∈ R
n×n is symmetric and tridiagonal. The QR algo-

rithm defines a sequence of symmetric tridiagonal matrices A(k) ∈ R
n×n,

k = 0, 1, 2, . . ., starting with A(0) = A, as follows.
Suppose that k ≥ 0. The kth step of the QR algorithm takes the

symmetric tridiagonal matrix A(k) and chooses a shift µk ∈ R (the
choice of µk will be discussed below), then forming the QR factorisation

A(k) − µk I = Q(k) R(k) .

We then multiply Q(k) and R(k) in the reverse order, and construct the
new matrix A(k+1) defined by

A(k+1) = R(k) Q(k) + µk I .

Recalling that the matrix Q(k) is orthogonal, it is a simple matter to see
that A(k+1) = Q(k)TA(k)Q(k), so that A(k+1) and A(k) have the same
eigenvalues. As A(0) = A, all matrices in the sequence (A(k)) have the
same eigenvalues as A itself. It is also easy to show that each of the
matrices A(k) is symmetric and tridiagonal. (See Exercise 7.)
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The choice of the shift parameter µk is very important; if correctly
chosen the sequence of matrices A(k) converges very rapidly to a matrix
in which one of the off-diagonal elements is zero. If this element is in the
first or last row, we have thereby identified one of the eigenvalues; if it is
one of the intermediate elements, we can split the matrix into two sep-
arate matrices of lower order. In either case we can repeat the iterative
process with smaller matrices, until all the eigenvalues are found.

The usual simple choice of the shift parameter in the kth step is

µk = a(k)
nn ,

the last diagonal element of the matrix A(k). In general, after a few
steps of the iteration the element at position (n, n − 1) will become
negligibly small. One of the eigenvalues of the resulting matrix is then
the last diagonal element, and we continue the process with the matrix
of order n − 1 obtained by removing the last row and column. There
are special circumstances where this choice of shift is unsatisfactory, and
other situations where another choice is more efficient, but we shall not
discuss the details any further. The proof of the convergence of this
method is long and technical; details will be found in the books cited in
the Notes at the end of the chapter.

The method does not determine the eigenvalues in any particular or-
der, so if we require only a small number of the largest eigenvalues, for
example, the Sturm sequence method is preferable. The usual recom-
mendation is that the QR algorithm should be used on a matrix of order
n if more than about 1

4 n of the eigenvalues are required.

Example 5.9 We apply the QR algorithm to the tridiagonal matrix
(5.31).

After one step of the iteration the matrix A(1) = R(0) Q(0) + µ0 I, with
µ0 = a

(0)
55 = a55, is

A(1) =




7.034 −2.271 0 0 0
−2.271 2.707 −0.744 0 0

0 −0.744 5.804 3.202 0
0 0 3.202 −0.464 1.419
0 0 0 1.419 −2.082


 .

In successive iterations k = 1, 2, 3, 4, 5, the element a
(k)
54 has the values

1.419, −1.262, 0.965, −0.223, 0.002, and after the next iteration a
(6)
54
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vanishes to 10 decimal digits. The element a
(6)
55 is −3.282, which is

therefore an eigenvalue.
We then remove the last row and column, and continue the process

on the resulting 4 × 4 matrix. After just one iteration the element at
position (4, 3) vanishes to 7 decimal digits, giving the eigenvalue −0.671.
We remove the last row and column and continue with the resulting 3×3
matrix. After one iteration of the resulting 3 × 3 matrix the element
at position (3, 2) is 0.0005, and another iteration gives the accurate
eigenvalue 1.690. We are now left with a 2×2 matrix, and the calculation
of the last two eigenvalues is trivial. The number of iterations required
to isolate each eigenvalue reduces as the algorithm reduces the size of
the matrix; this sort of behaviour is typical.

The numerical values agree with those obtained by Jacobi’s method,
and the bisection method. �

5.8 Inverse iteration for the eigenvectors

We saw in Section 5.3 that Jacobi’s method can also, if required, produce
the eigenvectors of the matrix, but the use of Householder’s algorithm, in
conjunction with the Sturm sequence method or the QR algorithm, only
gives the eigenvalues. Suppose that A ∈ R

n×n is a symmetric matrix,
and assume that we have a good approximation ϑ ∈ R to the required
eigenvalue λ ∈ R of A, and some approximation v(0) ∈ R

n
∗ , ‖v(0)‖2 = 1,

to the associated eigenvector v ∈ R
n
∗ , ‖v‖2 = 1. It is implicitly assumed

that ϑ �= λ and that ϑ is not an eigenvalue of A, so that the matrix
A − ϑI is nonsingular. The method of inverse iteration defines the
sequence of vectors v(k), k = 0, 1, . . ., as follows: given v(k) ∈ R

n
∗ , find

w(k) ∈ R
n
∗ and then v(k+1) ∈ R

n
∗ from

(A − ϑI)w(k) = v(k) ,
(5.36)

v(k+1) = ckw
(k) ,

where ck = 1/
√
w(k)Tw(k) = 1/‖w(k)‖2. Hence, we conclude that

‖v(k)‖2 = 1, k = 0, 1, 2, . . ..

Theorem 5.10 Suppose that A ∈ R
n×n
sym . The sequence of vectors (v(k))

in R
n
∗ defined in the process of inverse iteration (5.36) converges to the

normalised eigenvector v ∈ R
n
∗ corresponding to the eigenvalue λ ∈ R

which is closest to ϑ ∈ R, provided that λ is a simple eigenvalue and the
initial vector v(0) ∈ R

n
∗ is not orthogonal to the vector v.
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Proof According to Theorem 5.1 (vii), the vector v(0) can be expressed
as a linear combination of the (ortho)normalised eigenvectors x(j) in R

n
∗ ,

j = 1, 2, . . . , n, of the matrix A in the form

v(0) =
n∑
j=1

αjx
(j) , αj = v(0)Tx(j). (5.37)

Let λs ∈ R denote the eigenvalue of A which is closest to ϑ ∈ R. We shall
prove that the sequence (v(k)) converges, as k → ∞, to the eigenvector
v = x(s) ∈ R

n
∗ associated with λs, provided that αs = v(0)Tx(s) �= 0.

On expanding

w(0) =
n∑
j=1

βjx
(j) ,

inserting this expansion into the first line of (5.36) with k = 0 and
comparing the resulting left-hand side with the expansion (5.37) of v(0)

on the right, we find that (λj − ϑ)βj = αj . Our hypothesis that αs �= 0
implies that λs �= ϑ. Further, as λs is the eigenvalue closest to ϑ, it then
follows that λj − ϑ �= 0 for all j ∈ {1, 2, . . . , n}. Hence,

v(1) = c0w
(0) = c0

n∑
j=1

αj
λj − ϑ

x(j) .

Repeating this argument for k = 1, 2, . . . ,m − 1 gives

v(m) = cm−1 . . . c0

n∑
j=1

αj
(λj − ϑ)m

x(j) . (5.38)

Now v(m)Tv(m) = 1, and therefore,

cm−1 . . . c0 =


 n∑
j=1

α2
j

(λj − ϑ)2m



−1/2

. (5.39)

Substituting (5.39) into (5.38), we obtain

v(m) =

∑n
j=1

αj

(λj−ϑ)mx(j)

[∑n
j=1

α2
j

(λj−ϑ)2m

]1/2
=

xs +
∑
j 
=s

(
αj

αs

)(
λs−ϑ
λj−ϑ

)m
x(j)

[
1 +

∑
j 
=s

(
αj

αs

)2 (
λs−ϑ
λj−ϑ

)2m
]1/2

.

Since ∣∣∣∣λs − ϑ

λj − ϑ

∣∣∣∣ < 1 ∀ j ∈ {1, 2, . . . , n} \ {s} ,

we find that limm→∞ v(m) = xs = v; that completes the proof.
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If the estimate ϑ is within rounding error of λs and the eigenvalues
are well spaced, the convergence of the sequence (v(k)) will be extremely
rapid: usually a couple of iterations will be sufficient.

The proof of Theorem 5.10 breaks down if αs = 0, i.e., when the initial
vector v(0) is exactly orthogonal to the required eigenvector. However,
this does not mean that the iteration (5.36) will also break down; for
the effect of rounding error will almost always introduce a small multiple
of the vector x(s) into the expansion of v(0) in terms of the x(j) with
j = 1, 2, . . . , n, and the required eigenvector will then be obtained in a
small number of iterations. This is a useful property of the method, since
in practice it is not possible to check whether or not v(0) is orthogonal
to v, given that the eigenvector v is unknown.

There will also be a problem if there is a multiple eigenvalue, or two
eigenvalues are very close together: in the first case |λs−ϑ|/|λj−ϑ| = 1
for some j �= s, and the proof of Theorem 5.10 breaks down; in the
second case |λs − ϑ|/|λj − ϑ| ≈ 1 for some j �= s, leading to very slow
convergence.

The computation of w(k) from (5.36) requires the solution of a system
of linear equations whose matrix is A − ϑI. This matrix will usually
be nearly singular – in fact, our objective in choosing ϑ was to make
A − ϑI exactly singular. In general the solution of such a system is
extremely dangerous, because of the effect of rounding errors; in this
case, however, the effect of rounding error will be to introduce a multiple
of the dominant eigenvector, and this is exactly what is required. An
analysis of the effect of rounding errors will confirm this fact, but would
take too long here.1

There are two ways in which we can implement the inverse iteration
process. One obvious possibility would be to use the original matrix
A ∈ R

n×n, as implied in (5.36). An alternative is to replace A in this
equation by the tridiagonal matrix T ∈ R

n×n supplied by Householder’s
method. The calculation is then very much quicker, but produces the
eigenvector of T ; to obtain the corresponding eigenvector of A we must
then apply to this vector the sequence of Householder transformations
which were used in the original reduction to tridiagonal form. It is easy
to show that this is the most efficient method.
1 For further details, we refer to Sec. 4.3 in B. Parlett, The Symmetric Eigenvalue

Problem, Prentice–Hall, Englewood Cliffs, NJ, 1980, and Section 7.6.1 in G.H.
Golub and C.F. Van Loan, Matrix Computations, Third Edition, Johns Hopkins
University Press, Baltimore, 1996.



5.8 Inverse iteration for the eigenvectors 169

Inverse iteration with the original matrix A ∈ R
n×n requires the LU

decomposition of A, followed by one or more forward and backsubsti-
tution operations. As we saw in Section 2.6, the LU decomposition
requires approximately 1

3n
3 multiplications. The same process with the

tridiagonal matrix T , using the Thomas algorithm, involves only a small
multiple of n multiplications.

Having found an eigenvector of the tridiagonal matrix T ∈ R
n×n, so

that

Tv = λv ,

we use the fact that QTAQ = T to write

AQv = λQv ,

so that the vector Qv is an eigenvector of A. Using Theorem 5.7, this
means that the required eigenvector of A is

H(n,n−1) . . . H(n,2)v ,

where the matrices H(n,j) ∈ R
n×n, j = 2, . . . , n − 1, are Householder

matrices. To multiply a vector x by a Householder matrix H = H(u)
we write

Hx = (I − αuuT)x = x− α(uTx)u .

Assuming that α = 2/(uTu) is known, this requires the calculation of
the scalar product uTx, and then subtracting a multiple of the vector
u from the vector x. This evidently involves 2n multiplications. Hence
the calculation of Qv requires only 2n(n − 2) multiplications, and the
work involved in the whole process is proportional to n2, instead of n3.
In fact the total is less than 2n(n − 2), since a more careful count can
use the fact that many of the elements in the vector u are known to be
zero.

Example 5.10 Returning to the tridiagonal matrix (5.31), the QR al-
gorithm has given an accurate eigenvalue which is 8.094 to three decimal
digits. Beginning the inverse iteration (5.36) with a randomly chosen
vector v(0) ∈ R

5
∗, we find that

v(1) = (−0.0249,−0.0574,−0.3164, 0.4256, 0.8455)T.

Successive iterations make no change in this vector, as might be expected,
since the eigenvalue used was accurate to within rounding error.
This is therefore the eigenvector of the tridiagonal matrix (5.31), to
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within rounding error. To obtain the eigenvector of the original matrix
(5.16) we multiply v(1) in succession by the three Householder matri-
ces defined by the vectors (5.30), (5.29) and (5.28). The result is the
eigenvector

v = (−0.0249, −0.5952, −0.1920, −0.2885, 0.7246)T.

Using this vector and the accurately calculated eigenvalue, we can check
the result, and find that the elements of Av − λv are of the same order
as rounding error.

5.9 The Rayleigh quotient

In this section we develop a simple technique based on the concept of
Rayleigh quotient,1 for obtaining an accurate approximation to an eigen-
value of a symmetric matrix when a reasonably accurate approximation
to the associated eigenvector is already available.

Definition 5.7 Given a vector x ∈ R
n
∗ and a matrix A ∈ R

n×n
sym , the

associated Rayleigh quotient R(x) is defined as the real number

R(x) =
xTAx

xTx
. (5.40)

Clearly, if x ∈ R
n
∗ is an eigenvector corresponding to an eigenvalue

λ ∈ R of a matrix A ∈ R
n×n
sym , then R(x) = λ. More generally, if x is

any nonzero vector in R
n, then a number of further properties of the

Rayleigh quotient are immediate deductions from the expansion of x in
terms of the eigenvectors of A.

Theorem 5.11 Suppose that the matrix A ∈ R
n×n
sym has the eigenvalues

λj ∈ R, j = 1, 2, . . . , n, and the corresponding normalised eigenvectors
x(j) ∈ R

n
∗ , j = 1, 2, . . . , n. If the vector x is expressed in terms of the

1 John William Strutt, Lord Rayleigh (12 November 1842, Langford Grove (near
Maldon), Essex, England – 30 June 1919, Terling Place, Witham, Essex, England).
In 1879 Rayleigh wrote a paper on travelling waves which set the foundation for
the modern theory of solitons. His theory of scattering (1871) was the first correct
explanation of why the sky is blue: the intensity of light scattered from small
particles is inversely proportional to the fourth power of the wavelength; for this
reason, the intensity of the short-wavelength blue component dominates in the
scattered light reaching our eyes. From 1879 to 1884 Rayleigh was the second
Cavendish Professor of Physics at Cambridge, succeeding Maxwell, and he was
awarded the Nobel prize in 1904 for the discovery of the gas argon.
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eigenvectors x(j), j = 1, 2, . . . , n, as

x =
n∑
j=1

αj x
(j) , (5.41)

then

R(x) =

∑n
j=1 λj α

2
j∑n

j=1 α2
j

. (5.42)

On noting that x(i)Tx(j) is equal to 1 when i = j and to 0 otherwise,
(5.42) follows trivially by inserting (5.41) into (5.40).

Theorem 5.12 Let A ∈ R
n×n
sym . For any vector x ∈ R

n
∗ ,

λmin ≤ R(x) ≤ λmax , (5.43)

where λmin ∈ R and λmax ∈ R are respectively the least and greatest of
the eigenvalues of A. These bounds are attained when x is the corre-
sponding eigenvector.

Proof The inequalities follow immediately from (5.42) by noting that
λmin ≤ λj ≤ λmax, j = 1, 2, . . . , n.

Theorem 5.13 Suppose that x ∈ R
n
∗ is a normalised vector, that is,

‖x‖2 = 1. Assume, further, that x(k) ∈ R
n
∗ is the kth normalised eigen-

vector of A ∈ R
n×n, and that

‖x− x(k)‖2 = O(ε)

for a small ε ∈ R. Then,

R(x) = λk + O(ε2) .

Proof It follows from (5.41) that xTx(k) = αk, and therefore,

‖x− x(k)‖2
2 = (x− x(k))T(x− x(k))

= ‖x‖2
2 − 2xTx(k) + ‖x(k)‖2

2

= 2(1 − αk).

Hence, αk = 1 + O(ε2). Further,

1 = ‖x‖2
2 =

n∑
j=1

α2
j
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= α2
k +

∑
j 
=k

α2
j

= 1 + O(ε2) +
∑
j 
=k

α2
j .

Consequently, αj = O(ε) for all j �= k. The result then follows from
(5.42) which (with

∑n
j=1 α2

j = ‖x‖2
2 = 1) yields that

R(x) = λkα
2
k +

∑
j 
=k

λjα
2
j

= λk + O(ε2) .

This important result means that if we have a fairly close approxima-
tion x to an eigenvector of A, then the Rayleigh quotient R(x) gives
very easily a much more accurate approximation to the corresponding
eigenvalue.

5.10 Perturbation analysis

It is often necessary to have an estimate of how much the eigenvalues
and eigenvectors of a matrix are affected by changes in the elements.
Such perturbations may arise, for example, when the matrix elements
are obtained by physical measurements which are inexact, or they might
result from finite difference approximations of a differential equation, as
will be seen in Chapter 13. The last two theorems in this chapter address
some of these questions. We begin with the following preliminary result.

Theorem 5.14 Let M ∈ R
n×n
sym , with eigenvalues λi and corresponding

orthonormal eigenvectors vi, i = 1, 2, . . . , n, and suppose that u �= 0 and
w are vectors in R

n and µ is a real number such that

(M − µI)u = w . (5.44)

Then, at least one eigenvalue λj of M satisfies

|λj − µ| ≤ ‖w‖2/‖u‖2 .

Proof If µ is equal to one of the eigenvalues the proof is trivial, so we
shall assume that µ �= λk, k = 1, 2, . . . , n. We write the vectors u and
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w as linear combinations of the eigenvectors of M , so that

u =
n∑
k=1

αkvk , w =
n∑
k=1

βkvk .

Substituting in (5.44), we may equate coefficients of the linearly inde-
pendent vectors vk, k = 1, 2, . . . , n, to deduce that

(λk − µ)αk = βk , k = 1, 2, . . . , n .

Now suppose that λj is the eigenvalue which is closest to µ; this means
that

|λj − µ| ≤ |λk − µ| , k = 1, 2, . . . , n .

Since the eigenvectors vi, i = 1, 2, . . . , n, are orthonormal in R
n, we have

n∑
k=1

α2
k = ‖u‖2

2 ,
n∑
k=1

β2
k = ‖w‖2

2 .

Hence
n∑
k=1

β2
k

(λk − µ)2
= ‖u‖2

2 ,

which gives

‖w‖2
2 =

n∑
k=1

β2
k ≥ (λj − µ)2

n∑
k=1

β2
k

(λk − µ)2
= (λj − µ)2‖u‖2

2 ,

as required.

We shall now use this result to show that in the case of a symmetric
matrix A, small symmetric perturbations of A lead to small changes in
the eigenvalues of A.

Theorem 5.15 (Bauer–Fike Theorem (symmetric case)) Suppose
that A,E ∈ R

n×n
sym and B = A−E. Assume, further, that the eigenvalues

of A are denoted by λj , j = 1, 2, . . . , n, and µ is an eigenvalue of B.
Then, at least one eigenvalue λj of A satisfies

|λj − µ| ≤ ‖E‖2 .

Proof This is a straightforward consequence of the previous theorem.
Suppose that u is the normalised eigenvector of B corresponding to the
eigenvalue µ, so that Bu = µu. Then,

(A − µI)u = (B + E − µI)u = Eu .
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It then follows from Theorem 5.14 that there is an eigenvalue λj of A

such that

|λj − µ| ≤ ‖Eu‖2 ≤ ‖E‖2 ‖u‖2 = ‖E‖2 ,

as required.

Example 5.11 Consider the 3 × 3 Hilbert matrix

A =




1 1/2 1/3

1/2 1/3 1/4

1/3 1/4 1/5




and its perturbation

B =


 1.0000 0.5000 0.3333

0.5000 0.3333 0.2500
0.3333 0.2500 0.2000




which results by rounding each entry of A to four decimal digits.

In this case, E = A−B and ‖E‖2 = 3.3× 10−5. Let µ be an eigenvalue
of B; then, according Theorem 5.15, at least one of the eigenvalues λ1,
λ2, λ3 of the matrix A satisfies the inequality

|λj − µ| ≤ 3.3 × 10−5 . (5.45)

Indeed, the true eigenvalues of A and B are, respectively,

λ1 = 0.002687338072 , λ2 = 0.1223270673 , λ3 = 1.408318925 ,

and

µ1 = 0.002664493933 , µ2 = 0.1223414532 , µ3 = 1.408294053 .

Therefore,

λ1−µ1 = 2.29×10−5, λ2−µ2 = −1.44×10−5, λ3−µ3 = 2.49×10−5,

which is in agreement with (5.45). �

5.11 Notes

Theorem 5.15 is a special case of the following general result, known as
the Bauer–Fike Theorem.1

1 F.L. Bauer and C.T. Fike, Norms and exclusion theorems, Num. Math. 2, 137–
141, 1960.
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Theorem 5.16 Assume that A ∈ C
n×n is diagonalisable; i.e., there

exists a nonsingular matrix X ∈ C
n×n such that X−1AX = Λ, where

Λ is a diagonal matrix whose diagonal entries λj, j = 1, . . . , n, are the
eigenvalues of A. Suppose further that E ∈ C

n×n, B = A−E, and µ is
an eigenvalue of B. Then, at least one eigenvalue λj of A satisfies

|λj − µ| ≤ κ2(X)‖E‖2 ,

where κ2(X) = ‖X‖2 ‖X−1‖2 is the condition number of the matrix X

in the matrix 2-norm ‖ · ‖2 on C
n×n.

In the special case when A, E ∈ R
n×n
sym , the matrix X can be chosen

to be orthogonal; i.e., X−1 = XT. Therefore, ‖X‖2 = ‖X−1‖2 = 1, and
hence κ2(X) = 1, in accordance with the inequality stated in Theorem
5.15. Theorems 5.15 and 5.16 estimate how far the eigenvalues of A are
perturbed by changes in the elements of A. The question as to how large
the changes in the eigenvectors may be is more difficult; it is discussed
in detail in

➧ J.H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press,
Oxford University Press, New York, 1988.

Chapter 8 of Wilkinson’s book outlines the convergence proof of the QR
iteration, while the convergence of Jacobi’s method is covered in Chapter
5 of that book. For further details, see also Chapter 9 of

➧ B. Parlett, The Symmetric Eigenvalue Problem, Prentice–Hall, En-
glewood Cliffs, NJ, 1980.

Exercises

5.1 Give a proof of Lemma 5.3.
5.2 Use Householder matrices to transform the matrix

A =




2 1 2 2
1 −7 6 5
2 6 2 −5
2 5 −5 1




to tridiagonal form.
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5.3 Use Sturm sequences to show that no eigenvalue of the matrix

A =




3 1 0 0
1 2 −2 0
0 −2 4 α

0 0 α 1




lies in the interval (0, 1) if 5α2 > 8, and that exactly one eigen-
value of A lies in this interval if 5α2 < 8.

5.4 Given any two nonzero vectors x and y in R
n, construct a

Householder matrix H such that Hx is a scalar multiple of y;
note that if Hx = cy, then c2 = xTx/yTy. Is the matrix
unique?

5.5 Suppose that the matrix D ∈ R
n×n is diagonal with distinct

diagonal elements d11, . . ., dnn. Let A ∈ R
n×n
sym , with |aij | ≤ 1

for all i, j ∈ {1, 2, . . . , n}, and assume that ε ∈ R is so small that
ε2 can be neglected, and that the matrix D+ εA has eigenvalue
λ+εµ and corresponding eigenvector e+εu. Show that λ = djj
for some j ∈ {1, 2, . . . , n} and that µ = ajj . Write down the
elements of e, and show that

ui = − aij
dii − λ

, i �= j .

Explain why the requirement that eigenvectors should be nor-
malised implies that uj = 0.

5.6 With the same notation as in Exercise 5, suppose now that
d11 = d22 = · · · = dkk, that dkk, dk+1,k+1, . . . , dnn are distinct,
and that ε3 can be neglected. Writing the matrices and the
eigenvector in partitioned form, so that(

d11Ik + εA1 εA2

εAT
2 Dn−k + εA3

)(
e+ εu + ε2x

f + εv + ε2y

)

= (λ + εµ + ε2ν)
(
e+ εu + ε2x

f + εv + ε2y

)
,

show that λ = d11, f = 0, and that µ is an eigenvalue of A1

with corresponding eigenvector e. Show how v is obtained from
the solution of (Dn−k − λI)v = −AT

2 e, and that

(A1 − µ)u = νe− A2v .
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Explain how the vector u can be obtained in terms of the eigen-
vectors and eigenvalues of the matrix A1, assuming that these
eigenvalues are distinct.

5.7 Suppose that A ∈ R
n×n
sym is tridiagonal, that A − µI = QR and

B = RQ+µI, where µ ∈ R, Q ∈ R
n×n is a product of plane ro-

tations and R ∈ R
n×n is upper triangular and tridiagonal. Show

that B can be written as an orthogonal transformation of A, and
that B is symmetric. Show also that the only nonzero elements
in the matrix B which are below the diagonal lie immediately
below the diagonal; deduce that B is tridiagonal.

5.8 Perform one step of the QR algorithm, using the shift µ = ann,
for the matrix

A =
(

0 1
1 0

)
.

Show that the QR algorithm does not converge for this matrix.
(This is a special case in which a different shift must be used.)

5.9 Perform one step of the QR algorithm, using the shift µ = ann,
for the matrix

A =
(

13 4
4 10

)
.

5.10 Carry out two steps of inverse iteration for the matrix

A =
(

2 2
2 5

)
,

using the eigenvalue estimate ϑ = 5 and the initial vector

v(0) =
(

1
1

)
.

Verify that the elements of the vector v(2) agree with those of
the true eigenvector with an accuracy of about 5%. Evaluate
the Rayleigh quotient using the vector v(2), and verify that the
result agrees with the true eigenvalue to about 1 in 3000.

5.11 An eigenvalue and eigenvector of the matrix A may be evaluated
by solving the system of nonlinear equations

(A − λI)x = 0 ,

xTx = 1

for the unknowns λ and x. Using Newton’s method, starting
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from estimates λ(0) and x(0), show that the next iteration is
determined by

A δx − δλ x(0) = −(A − λ(0)I)x(0) ,

−x(0)Tδx = 1
2 (x(0)Tx(0) − 1)

and x(1) = x(0) + δx, λ(1) = λ(0) + δλ. Comment on the differ-
ence between this method and the method of inverse iteration
in Section 5.8.

5.12 Suppose that A ∈ R
n×n
sym and that Jacobi’s method has produced

an orthogonal matrix R and a symmetric matrix B such that
B = RTAR. Suppose also that |bij | < ε for all i �= j. Show
that, for each j = 1, 2, . . . , n, there is at least one eigenvalue λ

of A such that

|λ − bjj | < ε
√
n .

5.13 Suppose that A ∈ R
n×n
sym and that the Householder reduction

and QR algorithm have produced an orthogonal matrix Q and
a tridiagonal matrix T such that T = QTAQ. Suppose also that
|tn,n−1| < ε. Show that there is at least one eigenvalue λ of A

such that

|λ − tnn| < ε .
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Polynomial interpolation

6.1 Introduction

It is time to take a break from solving equations. In this chapter we con-
sider the problem of polynomial interpolation; it involves finding a poly-
nomial that agrees exactly with some information that we have about a
real-valued function f of a single real variable x. This information may
be in the form of values f(x0), . . . , f(xn) of the function f at some finite
set of points {x0, . . . , xn} on the real line, and the corresponding poly-
nomial is then called the Lagrange interpolation polynomial1 or,
provided that f is differentiable, it may include values of the derivative
of f at these points, in which case the associated polynomial is referred
to as a Hermite interpolation polynomial.2

Why should we be interested in constructing Lagrange or Hermite
interpolation polynomials? If the function values f(x) are known for
all x in a closed interval of the real line, then the aim of polynomial
1 Joseph-Louis Lagrange (25 January 1736, Turin, Sardinia–Piedmont (now in
Italy) – 10 April 1813, Paris, France) made fundamental contributions to the cal-
culus of variations. He succeeded Euler as Director of Mathematics at the Berlin
Academy of Sciences in 1766. During his stay in Berlin Lagrange worked on as-
tronomy, the stability of the solar system, mechanics, dynamics, fluid mechanics,
probability, number theory, and the foundations of calculus. In 1787 he moved
to Paris and became a member of the Académie des Sciences. Napoleon named
Lagrange to the Legion of Honour and as a Count of the Empire in 1808, and on
3 April 1813, a week before his death, he received the Grand Croix of the Ordre
Impérial de la Réunion.

2 Charles Hermite (24 December 1822, Dieuze, Lorraine, France – 14 January 1901,
Paris, France). Hermite did not enjoy formal examinations and had to spend
five years to complete his undergraduate degree. He contributed to the theory
of elliptic functions and their application to the general polynomial equation of
the fifth degree. In 1873 he published the first proof that e is a transcendental
number. Using methods similar to those of Hermite, Lindemann established in
1882 that π was also transcendental. A number of mathematical entities bear
Hermite’s name: Hermite orthogonal polynomials, Hermite’s differential equation,
Hermite’s formula of interpolation and Hermitian matrices.

179
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interpolation is to approximate the function f by a polynomial over this
interval. Given that any polynomial can be completely specified by its
(finitely many) coefficients, storing the interpolation polynomial for f in
a computer will be, generally, more economical than storing f itself.

Frequently, it is the case, though, that the function values f(x) are
only known at a finite set of points x0, . . . , xn, perhaps as the results
of some measurements. The aim of polynomial interpolation is then to
attempt to reconstruct the unknown function f by seeking a polynomial
pn whose graph in the (x, y)-plane passes through the points with co-
ordinates (xi, f(xi)), i = 0, . . . , n. Of course, in general, the resulting
polynomial pn will differ from f (unless f itself is a polynomial of the
same degree as pn), so an error will be incurred. In this chapter we shall
also establish results which provide bounds on the size of this error.

6.2 Lagrange interpolation

Given that n is a nonnegative integer, let Pn denote the set of all (real-
valued) polynomials of degree ≤ n defined over the set R of real numbers.
The simplest interpolation problem can be stated as follows: given x0

and y0 in R, find a polynomial p0 ∈ P0 such that p0(x0) = y0. The
solution to this is, trivially, p0(x) ≡ y0. The purpose of this section is
to explore the following more general problem.

Let n ≥ 1, and suppose that xi, i = 0, 1, . . . , n, are distinct real num-
bers (i.e., xi �= xj for i �= j) and yi, i = 0, 1, . . . , n, are real numbers;
we wish to find pn ∈ Pn such that pn(xi) = yi, i = 0, 1, . . . , n.

To prove that this problem has a unique solution, we begin with a useful
lemma.

Lemma 6.1 Suppose that n ≥ 1. There exist polynomials Lk ∈ Pn,
k = 0, 1, . . . , n, such that

Lk(xi) =
{

1 , i = k ,

0 , i �= k ,
(6.1)

for all i, k = 0, 1, . . . , n. Moreover,

pn(x) =
n∑
k=0

Lk(x)yk (6.2)

satisfies the above interpolation conditions; in other words, pn ∈ Pn
and pn(xi) = yi, i = 0, 1, . . . , n.
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Proof For each fixed k, 0 ≤ k ≤ n, Lk is required to have n zeros – xi,
i = 0, 1, . . . , n, i �= k; thus, Lk(x) is of the form

Lk(x) = Ck

n∏
i=0
i
=k

(x − xi) , (6.3)

where Ck ∈ R is a constant to be determined. It is easy to find the value
of Ck by recalling that Lk(xk) = 1; using this in (6.3) yields

Ck =
n∏
i=0
i
=k

1
xk − xi

.

On inserting this expression for Ck into (6.3) we get

Lk(x) =
n∏
i=0
i
=k

x − xi
xk − xi

. (6.4)

As the function pn defined by (6.2) is a linear combination of the poly-
nomials Lk ∈ Pn, k = 0, 1, . . . , n, also pn ∈ Pn. Finally, pn(xi) = yi for
i = 0, 1, . . . , n is a trivial consequence of using (6.1) in (6.2).

Remark 6.1 Although the statement of Lemma 6.1 required that n ≥ 1,
the trivial case of n = 0 mentioned at the beginning of the section can
also be included by defining, for n = 0, L0(x) ≡ 1, and observing that
the function p0 defined by

p0(x) = L0(x)y0 (≡ y0 )

is the unique polynomial in P0 that satisfies p0(x0) = y0.

We note that, implicitly, the polynomials Lk, k = 0, 1, . . . , n, depend
on the polynomial degree n, n ≥ 0. To highlight this fact, a more accu-
rate but cumbersome notation would have involved writing, for example,
Lnk (x) instead of Lk(x); this would have made it clear that Lnk (x) differs
from Lmk (x) when the polynomial degrees n and m differ. For the sake of
notational simplicity, we have chosen to write Lk(x); the implied value
of n will always be clear from the context.

Theorem 6.1 (Lagrange’s Interpolation Theorem) Assume that
n ≥ 0. Let xi, i = 0, . . . , n, be distinct real numbers and suppose that
yi, i = 0, . . . , n, are real numbers. Then, there exists a unique polynomial
pn ∈ Pn such that

pn(xi) = yi , i = 0, . . . , n . (6.5)
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Proof In view of Remark 6.1, for n = 0 the proof is trivial. Let us
therefore suppose that n ≥ 1. It follows immediately from Lemma 6.1
that the polynomial pn ∈ Pn defined by

pn(x) =
n∑
k=0

Lk(x)yk

satisfies the conditions (6.5), thus showing the existence of the required
polynomial. It remains to show that pn is the unique polynomial in Pn
satisfying the interpolation property

pn(xi) = yi , i = 0, 1, . . . , n .

Suppose, otherwise, that there exists qn ∈ Pn, different from pn, such
that qn(xi) = yi, i = 0, 1, . . . , n. Then, pn − qn ∈ Pn and pn − qn
has n + 1 distinct roots, xi, i = 0, 1, . . . , n; since a polynomial of degree
n cannot have more than n distinct roots, unless it is identically 0, it
follows that

pn(x) − qn(x) ≡ 0 ,

which contradicts our assumption that pn and qn are distinct. Hence,
there exists only one polynomial pn ∈ Pn which satisfies (6.5).

Definition 6.1 Suppose that n ≥ 0. Let xi, i = 0, . . . , n, be distinct real
numbers, and yi, i = 0, . . . , n, real numbers. The polynomial pn defined
by

pn(x) =
n∑
k=0

Lk(x)yk , (6.6)

with Lk(x), k = 0, 1, . . . , n, defined by (6.4) when n ≥ 1, and L0(x) ≡ 1
when n = 0, is called the Lagrange interpolation polynomial of
degree n for the set of points {(xi, yi): i = 0, . . . , n}. The numbers xi,
i = 0, . . . , n, are called the interpolation points.

Frequently, the real numbers yi are given as the values of a real-
valued function f , defined on a closed real interval [a, b], at the (distinct)
interpolation points xi ∈ [a, b], i = 0, . . . , n.

Definition 6.2 Let n ≥ 0. Given the real-valued function f , defined and
continuous on a closed real interval [a, b], and the (distinct) interpolation
points xi ∈ [a, b], i = 0, . . . , n, the polynomial pn defined by
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pn(x) =
n∑
k=0

Lk(x)f(xk) (6.7)

is the Lagrange interpolation polynomial of degree n (with in-
terpolation points xi, i = 0, . . . , n) for the function f .

Example 6.1 We shall construct the Lagrange interpolation polynomial
of degree 2 for the function f : x �→ ex on the interval [−1, 1], with
interpolation points x0 = −1, x1 = 0, x2 = 1.

As n = 2, we have that

L0(x) =
(x − x1)(x − x2)

(x0 − x1)(x0 − x2)
= 1

2x(x − 1) .

Similarly, L1(x) = 1 − x2 and L2(x) = 1
2x(x + 1). Therefore,

p2(x) = 1
2x(x − 1) e−1 + (1 − x2) e0 + 1

2x(x + 1) e1 .

Thus, after some simplification, p2(x) = 1 + x sinh 1 + x2(cosh 1− 1). �
Although the values of the function f and those of its Lagrange inter-

polation polynomial coincide at the interpolation points, f(x) may be
quite different from pn(x) when x is not an interpolation point. Thus, it
is natural to ask just how large the difference f(x) − pn(x) is when
x �= xi, i = 0, . . . , n. Assuming that the function f is sufficiently
smooth, an estimate of the size of the interpolation error f(x)−pn(x)
is given in the next theorem.

Theorem 6.2 Suppose that n ≥ 0, and that f is a real-valued function,
defined and continuous on the closed real interval [a, b], such that the
derivative of f of order n + 1 exists and is continuous on [a, b]. Then,
given that x ∈ [a, b], there exists ξ = ξ(x) in (a, b) such that

f(x) − pn(x) =
f (n+1)(ξ)
(n + 1)!

πn+1(x) , (6.8)

where

πn+1(x) = (x − x0) . . . (x − xn) . (6.9)

Moreover

|f(x) − pn(x)| ≤ Mn+1

(n + 1)!
|πn+1(x)| , (6.10)
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where

Mn+1 = max
ζ∈[a,b]

|f (n+1)(ζ)| .

Proof When x = xi for some i, i = 0, 1, . . . , n, both sides of (6.8) are
zero, and the equality is trivially satisfied. Suppose then that x ∈ [a, b]
and x �= xi, i = 0, 1, . . . , n. For such a value of x, let us consider the
auxiliary function t �→ ϕ(t), defined on the interval [a, b] by

ϕ(t) = f(t) − pn(t) − f(x) − pn(x)
πn+1(x)

πn+1(t) . (6.11)

Clearly ϕ(xi) = 0, i = 0, 1, . . . , n, and ϕ(x) = 0. Thus, ϕ vanishes at
n + 2 points which are all distinct in [a, b]. Consequently, by Rolle’s
Theorem, Theorem A.2, ϕ′(t), the first derivative of ϕ with respect to t,
vanishes at n + 1 points in (a, b), one between each pair of consecutive
points at which ϕ vanishes.

In particular, if n = 0, we then deduce the existence of ξ = ξ(x)
in the interval (a, b) such that ϕ′(ξ) = 0. Since p0(x) ≡ f(x0) and
π1(t) = t − x0, it follows from (6.11) that

0 = ϕ′(ξ) = f ′(ξ) − f(x) − p0(x)
π1(x)

,

and hence (6.8) in the case of n = 0.
Now suppose that n ≥ 1. As ϕ′(t) vanishes at n+1 points in (a, b), one

between each pair of consecutive points at which ϕ vanishes, applying
Rolle’s Theorem again, we see that ϕ′′ vanishes at n distinct points. Our
assumptions about f are sufficient to apply Rolle’s Theorem n+1 times
in succession, showing that ϕ(n+1) vanishes at some point ξ ∈ (a, b), the
exact value of ξ being dependent on the value of x. By differentiating
n + 1 times the function ϕ with respect to t, and noting that pn is a
polynomial of degree n or less, it follows that

0 = ϕ(n+1)(ξ) = f (n+1)(ξ) − f(x) − pn(x)
πn+1(x)

(n + 1)!

Hence

f(x) − pn(x) =
f (n+1)(ξ)
(n + 1)!

πn+1(x) .

In order to prove (6.10), we note that as f (n+1) is a continuous
function on [a, b] the same is true of |f (n+1)|. Therefore, the function
x �→ |f (n+1)(x)| is bounded on [a, b] and achieves its maximum there; so
(6.10) follows from (6.8).
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It is perhaps worth noting that since the location of ξ in the interval
[a, b] is unknown (to the extent that the exact dependence of ξ on x

is not revealed by the proof of Theorem 6.2), (6.8) is of little practical
value; on the other hand, given the function f , an upper bound on the
maximum value of f (n+1) over [a, b] is, at least in principle, possible to
obtain, and thereby we can provide an upper bound on the size of the
interpolation error by means of inequality (6.10).

6.3 Convergence

An important theoretical question is whether or not a sequence (pn) of
interpolation polynomials for a continuous function f converges to f as
n → ∞. This question needs to be made more specific, as pn depends
on the distribution of the interpolation points xj , j = 0, 1, . . . , n, not
just on the value of n. Suppose, for example, that we agree to choose
equally spaced points, with

xj = a + j(b − a)/n , j = 0, 1, . . . , n , n ≥ 1 .

The question of convergence then clearly depends on the behaviour of
Mn+1 as n increases. In particular, if

lim
n→∞

Mn+1

(n + 1)!
max
x∈[a,b]

|πn+1(x)| = 0 ,

then, by (6.10),

lim
n→∞ max

x∈[a,b]
|f(x) − pn(x)| = 0 , (6.12)

and we say that the sequence of interpolation polynomials (pn), with
equally spaced points on [a, b], converges to f as n → ∞, uniformly on
the interval [a, b].

You may now think that if all derivatives of f exist and are continuous
on [a, b], then (6.12) will hold. Unfortunately, this is not so, since the
sequence (

Mn+1 max
x∈[a,b]

|πn+1(x)|
)

may tend to ∞, as n → ∞, faster than the sequence (1/(n + 1)!) tends
to 0.

In order to convince you of the existence of such ‘pathological’ func-
tions, we consider the sequence of Lagrange interpolation polynomials



186 6 Polynomial interpolation

Table 6.1. Runge phenomenon: n denotes the degree of the
interpolation polynomial pn to f , with equally spaced points on [−5, 5].

‘Max error’ signifies maxx∈[−5,5] |f(x) − pn(x)|.

Degree n Max error

2 0.65
4 0.44
6 0.61
8 1.04

10 1.92
12 3.66
14 7.15
16 14.25
18 28.74
20 58.59
22 121.02
24 252.78

pn, n = 0, 1, 2, . . ., with equally spaced interpolation points on the inter-
val [−5, 5], to

f(x) =
1

1 + x2
, x ∈ [−5, 5] .

This example is due to Runge,1 and the characteristic behaviour ex-
hibited by the sequence of interpolation polynomials pn in Table 6.1 is
referred to as the Runge phenomenon: Table 6.1 shows the maxi-
mum difference between f(x) and pn(x) for −5 ≤ x ≤ 5, for values of
n from 2 up to 24. The numbers indicate clearly that the maximum
error increases exponentially as n increases. Figure 6.1 shows the inter-
polation polynomial p10, using the equally spaced interpolation points
xj = −5 + j, j = 0, 1, . . . , 10. The sizes of the local maxima near ±5
grow exponentially as the degree n increases.

Note that, in many ways, the function f is well behaved; all its deriva-
1 Carle David Tolmé Runge (30 August 1856, Bremen, Germany – 3 January 1927,
Göttingen, Germany) studied mathematics and physics at the University of Mu-
nich. His doctoral dissertation in 1880 was in the area of differential geometry.
Gradually, his research interests shifted to more applied topics: he devised a nu-
merical procedure for the solution of algebraic equations where the roots were
expressed as infinite series of rational functions of the coefficients, and in 1887
he started to work on the wavelengths of the spectral lines of elements. In 1904
Runge became Professor of Applied Mathematics in Göttingen. He was a fit and
active man: on his 70th birthday he entertained his grandchildren by performing
handstands. A few months later he suffered a fatal heart attack.



6.4 Hermite interpolation 187

✲

✻

1−1 2−2 3−3 4−4 5−5

0.5

1.5

2.0

···
·
·
·
·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

··

·

··

·

··

·

···

·

····

·

····

·

···

·

··

·

··

·

··

·

··

·

··

·

··

·

··

·

··

·

··

·

··

·

··

·

··

·

··

·

··

·

··

·

··

·

··

·

··

·

··

·

··

·

··

·

··

·

··

·

··
·
··
·
··
·
··
·
·······················
···
·
···
·
···
·
····
·
····
·
····
·
····

·

····

·

····
·

····
·
····
·
····
·
····
·
····
·
····
·
····
·
····
·
····
·
·····························
········································
·······················································································································

·································
·························
···························
··························
····················
····················
·························
··························································································································································································································································································································································································································································

····
·
····
·
····
·
····
·
····
·
····
·
····
·
····
·
····

·

····

·

····

·

····
·
····
·
····
·
····
·
···
·
···
·
···
·
················
······
·
··
·
··
·
··

·

··

·

··

·

··

·

··

·

··

·

··

·

··

·

··

·

··

·

··

·

··

·

··

·

··

·

··

·

··

·

··

·

··

·

··

·

··

·

··

·

··

·

··

·

··

·

··

·

···

·

····

·

····

·

···

·

··

·

··

·

··

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·
·
·
·
··

Fig. 6.1. Polynomial interpolation of f : x �→ 1/(1 + x2) for x ∈ [−5, 5]. The
continuous curve is f ; the dotted curve is the associated Lagrange interpolation
polynomial p10 of degree 10, using equally spaced interpolation points.

tives are continuous and bounded for all x ∈ [−5, 5]. The apparent di-
vergence of the sequence of Lagrange interpolation polynomials (pn) is
related to the fact that, when extended to the complex plane, the Taylor
series of the complex-valued function f : z �→ 1/(1+ z2) converges in the
open unit disc of radius 1 but not in any disc of larger radius centred
at z = 0, given that f has poles on the imaginary axis at z = ±ı. Some
further insight into this problem is given in Exercise 11, and a similar
difficulty in numerical integration is discussed in Section 7.4.

6.4 Hermite interpolation

The idea of Lagrange interpolation can be generalised in various ways;
we shall consider here one simple extension where a polynomial p is
required to take given values and derivative values at the interpolation
points. Given the distinct interpolation points xi, i = 0, . . . , n, and two
sets of real numbers yi, i = 0, . . . , n, and zi, i = 0, . . . , n, with n ≥ 0, we
need to find a polynomial p2n+1 ∈ P2n+1 such that

p2n+1(xi) = yi , p′2n+1(xi) = zi , i = 0, . . . , n .
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The construction is similar to that of the Lagrange interpolation poly-
nomial, but now requires two sets of polynomials Hk and Kk with
k = 0, . . . , n; these will be defined in the proof of the next theorem.

Theorem 6.3 (Hermite Interpolation Theorem) Let n ≥ 0, and
suppose that xi, i = 0, . . . , n, are distinct real numbers. Then, given
two sets of real numbers yi, i = 0, . . . , n, and zi, i = 0, . . . , n, there is a
unique polynomial p2n+1 in P2n+1 such that

p2n+1(xi) = yi , p′2n+1(xi) = zi , i = 0, . . . , n . (6.13)

Proof Let us begin by supposing that n ≥ 1. As in the case of Lagrange
interpolation, we start by constructing a set of auxiliary polynomials;
we consider the polynomials Hk and Kk, k = 0, 1, . . . , n, defined by

Hk(x) = [Lk(x)]2(1 − 2L′
k(xk)(x − xk)) ,

(6.14)
Kk(x) = [Lk(x)]2(x − xk) ,

where

Lk(x) =
n∏
i=0
i
=k

x − xi
xk − xi

.

Clearly Hk and Kk, k = 0, 1, . . . , n, are polynomials of degree 2n+1. It
is easy to see that Hk(xi) = Kk(xi) = 0, H ′

k(xi) = K ′
k(xi) = 0 whenever

i, k ∈ {0, 1, . . . , n} and i �= k; moreover, a straightforward calculation
verifies their values when i = k, showing that

Hk(xi) =
{

1 , i = k ,

0 , i �= k ,
H ′
k(xi) = 0 , i, k = 0, 1, . . . , n ,

Kk(xi) = 0 , K ′
k(xi) =

{
1 , i = k ,

0 , i �= k ,
i, k = 0, 1, . . . , n .

We deduce that

p2n+1(x) =
n∑
k=0

[Hk(x)yk + Kk(x)zk]

satisfies the conditions (6.13), and p2n+1 is clearly an element of P2n+1.
To show that this is the only polynomial in P2n+1 satisfying these

conditions, we suppose otherwise; then, there exists a polynomial q2n+1

in P2n+1, distinct from p2n+1, such that

q2n+1(xi) = yi and q′2n+1(xi) = zi , i = 0, 1, . . . , n .
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Consequently, p2n+1 − q2n+1 has n + 1 distinct zeros; therefore, Rolle’s
Theorem implies that, in addition to the n + 1 zeros xi, i = 0, 1, . . . , n,
p′2n+1−q′2n+1 vanishes at another n points which interlace the xi. Hence
p′2n+1 −q′2n+1 ∈ P2n has 2n+1 zeros, which means that p′2n+1 −q′2n+1 is
identically zero, so that p2n+1 − q2n+1 is a constant function. However,
(p2n+1 − q2n+1)(xi) = 0 for i = 0, 1, . . . , n, and hence p2n+1 − q2n+1 ≡ 0,
contradicting the hypothesis that p2n+1 and q2n+1 are distinct. Thus,
p2n+1 is unique.

When n = 0, we define H0(x) ≡ 1 and K0(x) ≡ x − x0, which corre-
spond to taking L0(x) ≡ 1 in (6.15). Clearly, p1 defined by

p1(x) = H0(x)y0 + K0(x)z0 = y0 + (x − x0)z0

is the unique polynomial in P1 such that p1(x0) = y0 and p′1(x0) = z0.

Definition 6.3 Let n ≥ 0, and suppose that xi, i = 0, . . . , n, are distinct
real numbers and yi, zi, i = 0, . . . , n, are real numbers. The polynomial
p2n+1 defined by

p2n+1(x) =
n∑
k=0

[Hk(x)yk + Kk(x)zk] (6.15)

where Hk(x) and Kk(x) are defined by (6.15), is called the Hermite
interpolation polynomial of degree 2n + 1 for the set of values given
in {(xi, yi, zi): i = 0, . . . , n}.

Example 6.2 We shall construct a cubic polynomial p3 such that

p3(0) = 0 , p3(1) = 1 , p′3(0) = 1 and p′3(1) = 0 .

Here n = 1, and since p3(0) = p′3(1) = 0 the polynomial simplifies to

p3(x) = H1(x) + K0(x) .

We easily find that, with n = 1, x0 = 0 and x1 = 1,

L0(x) = 1 − x , L1(x) = x ,

and then,

H1(x) = [L1(x)]2(1 − 2L′
1(x1)(x − x1)) = x2(3 − 2x) ,

K0(x) = [L0(x)]2(x − x0) = (1 − x)2x .
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These yield the required Hermite interpolation polynomial,

p3(x) = −x3 + x2 + x .

�
Definition 6.4 Suppose that f is a real-valued function, defined on the
closed interval [a, b] of R, and that f is continuous and differentiable on
this interval. Suppose, further, that n ≥ 0 and that xi, i = 0, . . . , n, are
distinct points in [a, b]. Then, the polynomial p2n+1 defined by

p2n+1(x) =
n∑
k=0

[Hk(x)f(xk) + Kk(x)f ′(xk)] (6.16)

is the Hermite interpolation polynomial of degree 2n + 1 with
interpolation points xi, i = 0, . . . , n, for f . It satisfies the conditions

p2n+1(xi) = f(xi) , p′2n+1(xi) = f ′(xi) , i = 0, . . . , n .

Pictorially, the graph of p2n+1 touches the graph of the function f at
the points xi, i = 0, . . . , n.

To conclude this section we state a result, analogous to Theorem 6.2,
concerning the error in Hermite interpolation.

Theorem 6.4 Suppose that n ≥ 0 and let f be a real-valued function,
defined, continuous and 2n+ 2 times differentiable on the interval [a, b],
such that f (2n+2) is continuous on [a, b]. Further, let p2n+1 denote the
Hermite interpolation polynomial of f defined by (6.16). Then, for each
x ∈ [a, b] there exists ξ = ξ(x) in (a, b) such that

f(x) − p2n+1(x) =
f (2n+2)(ξ)
(2n + 2)!

[πn+1(x)]2 , (6.17)

where πn+1 is as defined in (6.9). Moreover,

|f(x) − p2n+1(x)| ≤ M2n+2

(2n + 2)!
[πn+1(x)]2 , (6.18)

where M2n+2 = maxζ∈[a,b] |f (2n+2)(ζ)|.

Proof The inequality (6.18) is a straightforward consequence of (6.17).
In order to prove (6.17), we observe that it is trivially true if x = xi
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for some i, i = 0, . . . , n; thus, it suffices to consider x ∈ [a, b] such that
x �= xi, i = 0, . . . , n. For such x, let us define the function t �→ ψ(t) by

ψ(t) = f(t) − p2n+1(t) − f(x) − p2n+1(x)
[πn+1(x)]2

[πn+1(t)]2 .

Then, ψ(xi) = 0 for i = 0, . . . , n, and also ψ(x) = 0. Hence, by
Rolle’s Theorem, ψ′(t) vanishes at n + 1 points which lie strictly be-
tween each pair of consecutive points from the set {x0, . . . , xn, x}. Also
ψ′(xi) = 0, i = 0, . . . , n; hence ψ′ vanishes at a total of 2n + 2 distinct
points in [a, b]. Applying Rolle’s Theorem repeatedly, we find eventu-
ally that ψ(2n+2) vanishes at some point ξ in (a, b), the location of ξ

being dependent on the position of x. This gives the required result on
computing ψ(2n+2)(t) from the definition of ψ above and noting that
ψ(2n+2)(ξ) = 0 and p

(2n+2)
2n+1 (t) ≡ 0.

6.5 Differentiation

From the Lagrange interpolation polynomial pn, defined by (6.7), which
is an approximation to f , it is easy to obtain the polynomial p′n, which
is an approximation to the derivative f ′. The polynomial p′n is given by

p′n(x) =
n∑
k=0

L′
k(x) f(xk) , n ≥ 1 . (6.19)

The degree of the polynomial p′n is clearly at most n − 1; p′n is a linear
combination of the derivatives of the polynomials Lk ∈ Pn, the coeffi-
cients being the values of f at the interpolation points xk, k = 0, 1, . . . , n.

In order to find an expression for the difference between f ′(x) and the
approximation p′n(x), we might simply differentiate (6.8) to give

f ′(x) − p′n(x) =
d
dx

(
f (n+1)(ξ(x))

(n + 1)!
πn+1(x)

)
.

However, the result is not helpful: on application of the chain rule, the
right-hand side involves the derivative dξ/dx; the value of ξ depends on
x, but not in any simple manner. In fact, it is not a priori clear that the
function x �→ ξ(x) is continuous, let alone differentiable. An alternative
approach is given by the following theorem.

Theorem 6.5 Let n ≥ 1, and suppose that f is a real-valued function
defined and continuous on the closed real interval [a, b], such that the
derivative of order n+1 of f is continuous on [a, b]. Suppose further that
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xi, i = 0, 1, . . . , n, are distinct points in [a, b], and that pn ∈ Pn is the
Lagrange interpolation polynomial for f defined by these points. Then,
there exist distinct points ηi, i = 1, . . . , n, in (a, b), and corresponding
to each x in [a, b] there exists a point ξ = ξ(x) in (a, b), such that

f ′(x) − p′n(x) =
f (n+1)(ξ)

n!
π∗
n(x) , (6.20)

where

π∗
n(x) = (x − η1) . . . (x − ηn) .

Proof Since f(xi) − pn(xi) = 0, i = 0, 1, . . . , n, there exists a point ηi
in (xi−1, xi) at which f ′(ηi) − p′n(ηi) = 0, for each i = 1, . . . , n. This
defines the points ηi, i = 1, . . . , n. Now the proof closely follows that of
Theorem 6.2.

When x = ηi for some i ∈ {1, . . . , n}, both sides of (6.20) are zero.
Suppose then that x is distinct from all the ηi, i = 1, . . . , n, and define
the function t �→ χ(t) by

χ(t) = f ′(t) − p′n(t) − f ′(x) − p′n(x)
π∗
n(x)

π∗
n(t) .

This function vanishes at every point ηi, i = 1, . . . , n, and also at the
point t = x. By successively applying Rolle’s Theorem we deduce that
χ(n) vanishes at some point ξ. The result then follows as in the proof of
Theorem 6.2.

Corollary 6.1 Under the conditions of Theorem 6.5,

|f ′(x) − p′n(x)| ≤ Mn+1

n!
|π∗
n(x)| ≤ (b − a)nMn+1

n!

for all x in [a, b], where Mn+1 = maxx∈[a,b] |f (n+1)(x)|.

In particular, we deduce that if f and all its derivatives are defined
and continuous on the closed interval [a, b], and

lim
n→∞

(b − a)nMn+1

n!
= 0 ,

then limn→∞ maxx∈[a,b] |f ′(x) − p′n(x)| = 0, showing the convergence of
the sequence of interpolation polynomials (p′n) to f ′, uniformly on [a, b].

The discussion in the last few paragraphs may give the impression that
numerical differentiation is a straightforward procedure. In practice,
however, things are much more complicated since the function values
f(xi), i = 0, 1, . . . , n, will be polluted by rounding errors.
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Example 6.3 Consider, for example, a real-valued function f that is
defined, continuous and differentiable on the closed interval [−h, h] of
the real line, where h > 0. Suppose that f has been sampled at the
points x0 = −h and x1 = h, and that f(±h) are known, but only up
to rounding errors ε±, respectively. Consider the Lagrange interpolation
polynomial p1 ∈ P1 for f that passes through the points (−h, f(−h)) and
(h, f(h)); clearly,

p1(x) =
f(h) − f(−h)

2h
(x + h) + f(−h) .

Differentiating this with respect to x yields

p′1(x) ≡ f(h) − f(−h)
2h

.

Now, p′1 is a polynomial of degree 0, representing an approximation to
f ′(x) at any x ∈ [−h, h], and in particular to f ′(0). Unfortunately, in the
presence of rounding errors only f(−h)+ε− and f(h)+ε+ are available,
with ε± unknown; thus, we can only calculate

(f(h) + ε+) − (f(−h) + ε−)
2h

. (6.21)

Rewriting this in the form

f(h) − f(−h)
2h

+
ε+ − ε−

2h
,

we see that even though the first fraction converges to f ′(0) as the spa-
cing 2h between the interpolation points −h and h tends to 0, for ε+−ε−
nonzero and fixed the second fraction will tend to infinity as h → 0.
Thus, if h is too small in comparison with |ε+ − ε−|, our approximation
to f ′(0) will be polluted by a large error of size |ε+ − ε−|/(2h), whereas
if h is very large in comparison with |ε+ − ε−|, then |ε+ − ε−|/(2h) will
be small, but (f(h) − f(−h))/(2h) may be a poor approximation to the
value f ′(0). These observations indicate the existence of an ‘optimal’ h,
depending on the size of the rounding error, for which the error between
f ′(0) and the approximation (6.21) is smallest. (See Exercise 12 for fur-
ther details.) �

Convergence, as h → 0, of the expression p′1(x) ≡ (f(h)−f(−h))/(2h)
to f ′(0) in the last example should not be confused with convergence, as
n → ∞, of the sequence of polynomials (p′n) to the function f ′ discussed
just prior to the example. In the former case, the polynomial degree is
fixed and the spacing between the two interpolation points, x0 = −h
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and x1 = h, tends to 0; in the latter case, the degree of the polynomial
p′n tends to infinity and consequently the spacing between the increas-
ing number of consecutive interpolation points shrinks. Nevertheless,
Example 6.3 illustrates the issue that caution should be exercised in the
course of numerical differentiation when rounding errors are present.

6.6 Notes

The interpolation polynomial (6.6) was discovered by Edward Waring
(1736–1798) in 1776, rediscovered by Euler in 1783 and published by
Joseph-Louis Lagrange (1736–1813) in his Leçons élémentaires sur les
mathématiques, Paris, 1795.

Lagrange’s interpolation theorem is a purely algebraic result, and it
also holds in number fields different from the field of real numbers con-
sidered in this chapter. In particular, it holds if the numbers xi and
yi, i = 0, 1, . . . , n, are complex, and the polynomial pn has complex co-
efficients. Theorem 6.2 is due to Augustin-Louis Cauchy (1789–1857).
The interpolation polynomial (6.15) was discovered by Charles Hermite
(1822–1901).

Before modern computers came into general use about 1960, the evalu-
ation of a standard mathematical function for a given value of x required
the use of published tables of the function, in book form. If x was not
one of the tabulated values, the required result was obtained by inter-
polation, using tabulated values close to x. The tabulated values were
given at equally spaced points, so that usually xj = jh, where h is a
fixed increment. In this case the Lagrange formula can be simplified;
as this sort of interpolation had to be done frequently, various devices
were used to make the calculations easy and quick. Older books, such
as F.B. Hildebrand’s Introduction to Numerical Analysis, published in
1956, contain extensive discussions of such special methods of interpo-
lation, some of which date back to the time of Newton, but are now
mainly of historical interest. A notable early contribution to the devel-
opment of mathematical tables is the work of Henry Briggs (1560–1630),
Savilian Professor of Geometry and fellow of Merton College in Oxford,
entitled Arithmetica logarithmica, published in 1624. It contained ex-
tensive calculations of the logarithms of thirty thousand numbers to 14
decimal digits; these were the numbers from 1 to 20000 and from 90000
to 100000. It also contained tables of the sin function to 15 decimal
digits, and of the tan and sec functions to 10 decimal digits.
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Exercises

6.1 Construct the Lagrange interpolation polynomial p1 of degree 1,
for a continuous function f defined on the interval [−1, 1], using
the interpolation points x0 = −1, x1 = 1. Show further that
if the second derivative of f exists and is continuous on [0, 1],
then

|f(x) − p1(x)| ≤ M2

2
(1 − x2) ≤ M2

2
, x ∈ [−1, 1] ,

where M2 = maxx∈[−1,1] |f ′′(x)|. Give an example of a function
f , and a point x, for which equality is achieved.

6.2 (i) Write down the Lagrange interpolation polynomial of degree
1 for the function f : x �→ x3, using the points x0 = 0, x1 = a.
Verify Theorem 6.2 by direct calculation, showing that in this
case ξ is unique and has the value ξ = 1

3 (x + a).
(ii) Repeat the calculation for the function f : x �→ (2x − a)4;
show that in this case there are two possible values for ξ, and
give their values.

6.3 Given the distinct points xi, i = 0, 1, . . . , n + 1, and the points
yi, i = 0, 1, . . . , n + 1, let q be the Lagrange polynomial of
degree n for the set of points {(xi, yi): i = 0, 1, . . . , n} and
let r be the Lagrange polynomial of degree n for the points
{(xi, yi): i = 1, 2, . . . , n + 1}. Define

p(x) =
(x − x0)r(x) − (x − xn+1)q(x)

xn+1 − x0
.

Show that p is the Lagrange polynomial of degree n + 1 for the
points {(xi, yi): i = 0, 1, . . . , n + 1}.

6.4 Let n ≥ 1. The points xj are equally spaced in [−1, 1], so that

xj =
2j − n

n
, j = 0, . . . , n .

With the usual notation

πn+1(x) = (x − x0) . . . (x − xn),

show that

πn+1(1 − 1/n) = − (2n)!
2nnn+1n!

.

Using Stirling’s formula

N ! ∼
√

2πNN+1/2e−N , N → ∞ ,
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verify that

πn+1(1 − 1/n) ∼ −2n+1/2e−n

n

for large values of n.
6.5 Let n ≥ 1. Suppose that xi, i = 0, 1, . . . , n, are distinct real

numbers, and yi, ui, i = 0, 1, . . . , n, are real numbers. Suppose,
further, that there exists p2n+1 ∈ P2n+1 such that p2n+1(xi) =
yi for all i = 0, 1, . . . , n, and p′′2n+1(xi) = ui, i = 0, 1, . . . , n.
Attempt to prove that p2n+1 is the unique polynomial with these
properties, by adapting the uniqueness proofs in Sections 6.2
and 6.4, using Rolle’s Theorem; explain where the proof fails.
Show that there is no polynomial p5 ∈ P5 such that p5(−1) = 1,
p5(0) = 0, p5(1) = 1, p′′5(−1) = 0, p′′5(0) = 0, p′′5(1) = 0, but that
if the first condition is replaced by p5(−1) = −1, then there is an
infinite number of such polynomials. Give an explicit expression
for the general form of these polynomials.

6.6 Suppose that n ≥ 1. The function f and its derivatives of
order up to and including 2n + 1 are continuous on [a, b]. The
points xi, i = 0, 1, . . . , n, are distinct and lie in [a, b]. Construct
polynomials l0(x), hi(x), ki(x), i = 1, . . . , n, of degree 2n such
that the polynomial

p2n(x) = l0(x)f(x0) +
n∑
i=1

[hi(x)f(xi) + ki(x)f ′(xi)]

satisfies the conditions

p2n(xi) = f(xi) , i = 0, 1, . . . , n ,

and

p′2n(xi) = f ′(xi) , i = 1, . . . , n .

Show also that for each value of x in [a, b] there is a number η,
depending on x, such that

f(x) − p2n(x) =
(x − x0)

∏n
i=1(x − xi)2

(2n + 1)!
f (2n+1)(η) .

6.7 Suppose that n ≥ 2. The function f and its derivatives of order
up to and including 2n are continuous on [a, b]. The points
xi, i = 0, 1, . . . , n, are distinct and lie in [a, b]. Explain how to
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construct polynomials l0(x), ln(x), hi(x), ki(x), i = 1, . . . , n−1,
of degree 2n − 1 such that the polynomial

p2n−1(x)= l0(x)f(x0)+ln(x)f(xn)+
n−1∑
i=1

[hi(x)f(xi)+ki(x)f ′(xi)]

satisfies the conditions p2n−1(xi) = f(xi), i = 0, 1, . . . , n, and
p′2n−1(xi) = f ′(xi), i = 1, . . . , n − 1. It is not necessary to give
explicit expressions for these polynomials.

Show also that for each value of x in [a, b] there is a number
η, depending on x, such that

f(x) − p2n−1(x) =
(x − x0)(x − xn)

∏n−1
i=1 (x − xi)2

(2n)!
f (2n)(η) .

6.8 By considering the symmetry of the graph of the polynomial

q(x) = x(x2 − 1)(x2 − 4)(x − 3) ,

show that the maximum of |q(x)| over the interval [0, 1] is at-
tained at the point x = 1

2 .
The values of the function f : x �→ sinx are given at the points

xi = iπ/8, for all integer values of i. For a general value of x,
an approximation u(x) to f(x) is calculated by first defining k

to be the integer part of 8x/π, so that xk ≤ x ≤ xk+1, and
then evaluating the Lagrange polynomial of degree 5 using the
six interpolation points (xj , f(xj)), j = k − 2, . . . , k + 3. Show
that, for all values of x,

| sinx − u(x)| ≤ 225π6

166 × 6!
< 0.00002 .

6.9 Let n ≥ 1. The interpolation points xj , j = 0, 1, . . . , 2n − 1,
are distinct, and xn+j = xj + ε for each j = 0, . . . , n − 1. The
Lagrange polynomial of degree 2n − 1 for the function f using
these points is denoted by p2n−1. Show that the terms involving
f(xj) and f(xn+j) in p2n−1 may be written

ϕj(x)ϕj(x − ε)
εϕj(xj)

{
x − xj

ϕj(xj + ε)
f(xj + ε) − x − xj − ε

ϕj(xj − ε)
f(xj)

}
,

where

ϕj(x) =
n−1∏
i=0
i
=j

(x − xi) .
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Find the limit of this expression as ε → 0, and deduce that
p2n−1 − q2n−1 → 0 as ε → 0, where q2n−1 is the Hermite inter-
polation polynomial for f , using the points xi, i = 0, . . . , n− 1.

6.10 Construct the Hermite interpolation polynomial of degree 3 for
the function f : x �→ x5, using the points x0 = 0, x1 = a,
and show that it has the form p3(x) = 3a2x3 − 2a3x2. Verify
Theorem 6.4 by direct calculation, showing that in this case ξ

is unique and has the value ξ = 1
5 (x + 2a).

6.11 The complex function z �→ f(z) of the complex variable z is
holomorphic in the region D of the complex plane; the boundary
of D is the simple closed contour C. The interpolation points
xj , j = 0, 1, . . . , n, with n ≥ 1, and the point x all lie in D.
Determine the residues of the function g defined by

g(z) =
f(z)
z − x

n∏
j=0

x − xj
z − xj

at its poles in D, and deduce that

f(x) − pn(x) =
1

2πı

∫
C

f(z)
z − x

n∏
j=0

x − xj
z − xj

dz ,

where pn is the Lagrange interpolation polynomial for the func-
tion f using the interpolation points xj , j = 0, 1, . . . , n.

Now, suppose that the real number x and the interpolation
points xj , j = 0, 1, . . . , n, all lie in the real interval [a, b], and
that D consists of all the points z such that |z − t| < K for all
t ∈ [a, b], where K is a constant with K > |b − a|. Show that
the length of the contour C is 2(b − a) + 2πK, and that

|f(x) − pn(x)| < (b − a + πK)M
π

(
b − a

K

)n+1

,

where M is such that |f(z)| ≤ M on C. Deduce that the se-
quence (pn) converges to f , uniformly on [a, b].

Show that these conditions are not satisfied by the function
f : x �→ 1/(1 + x2) for x in the interval [−5, 5]. For what values
of a are the conditions satisfied by f for x in the interval [−a, a]?

6.12 With the same notation as in Example 6.3, let

E(h) =
(f(h) + ε+) − (f(−h) + ε−)

2h
− f ′(0) .

Suppose that f ′′′(x) exists and is continuous at all x ∈ [−h, h].
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By expanding f(h) and f(−h) into Taylor series about the point
0, show that there exists ξ ∈ (−h, h) such that

E(h) =
1
6
h2f ′′′(ξ) +

ε+ − ε−
2h

.

Hence deduce that

|E(h)| ≤ 1
6
h2M3 +

ε

h

where M3 = maxx∈[−h,h] |f ′′′(x)| and ε = max(|ε+|, |ε−|). Show
further that the right-hand side of the last inequality achieves
its minimum value when

h =
(

3ε
M3

)1/3

.
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Numerical integration – I

7.1 Introduction

The problem of evaluating definite integrals arises both in mathematics
and beyond, in many areas of science and engineering. At some point in
our mathematical education we all learned to calculate simple integrals
such as ∫ 1

0

exdx or
∫ π

0

cosxdx

using a table of integrals, so you will know that the values of these are
e − 1 and 0 respectively; but how about the innocent-looking∫ 1

0

ex
2
dx and

∫ π

0

cos(x2)dx ,

or the more exotic∫ 2000

1

exp(sin(cos(sinh(cosh(tan−1(log(x))))))) dx?

Please try to evaluate these using a table of integrals and see how far
you can get! It is not so simple, is it? Of course, you could argue that
the last example was completely artificial. Still, it illustrates the point
that it is relatively easy to think of a continuous real-valued function f

defined on a closed interval [a, b] of the real line such that the definite
integral ∫ b

a

f(x) dx (7.1)

200



7.2 Newton–Cotes formulae 201

is very hard to reduce to an entry in the table of integrals by means of
the usual tricks of variable substitution and integration by parts. If you
have access to the computer package Maple, you may try to type

evalf(int(exp(sin(cos(sinh(cosh(arctan(log(x))))))), x=1..2000));

at the Maple command line. In about the same time as it will take you
to correctly type the command at the keyboard, as if by magic, the result
1514.780678 will pop up on the screen. How was this number arrived
at?

The purpose of this chapter, and its continuation, Chapter 10, is to
answer this question. Specifically, we shall address the problem of eval-
uating (7.1) approximately, by applying the results of Chapter 6 on
polynomial interpolation to derive formulae for numerical integration
(also called numerical quadrature rules). We shall also explain how one
can estimate the associated approximation error. What does polynomial
interpolation have to do with evaluating definite integrals? The answer
will be revealed in the next section which is about a class of quadrature
formulae bearing the names of two English mathematicians: Newton
and Cotes.1

7.2 Newton–Cotes formulae

Let f be a real-valued function, defined and continuous on the closed
real interval [a, b], and suppose that we have to evaluate the integral∫ b

a

f(x)dx .

Since polynomials are easy to integrate, the idea, roughly speaking, is
to approximate the function f by its Lagrange interpolation polynomial
pn of degree n, and integrate pn instead. Thus,∫ b

a

f(x)dx ≈
∫ b

a

pn(x)dx . (7.2)

For a positive integer n, let xi, i = 0, 1, . . . , n, denote the interpolation
1 Roger Cotes (10 July 1682, Burbage, Leicestershire, England – 5 June 1716, Cam-
bridge, Cambridgeshire, England) was a fellow of Trinity College in Cambridge.
At the age of 26 he became the first Plumian Professor of Astronomy and Ex-
perimental Philosophy. Even though he only published one paper in his lifetime,
entitled ‘Logometria’, Cotes made important contributions to the theory of loga-
rithms and integral calculus, particularly interpolation and table construction. In
reference to Cotes’ early death, Newton said: If he had lived we might have known
something.
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points; for the sake of simplicity, we shall assume that these are equally
spaced, that is,

xi = a + ih , i = 0, 1, . . . , n ,

where

h = (b − a)/n .

The Lagrange interpolation polynomial of degree n for the function f ,
with these interpolation points, is of the form

pn(x) =
n∑
k=0

Lk(x)f(xk) where Lk(x) =
n∏
i=0
i
=k

x − xi
xk − xi

.

Inserting the expression for pn into the right-hand side of (7.2) yields∫ b

a

f(x)dx ≈
n∑
k=0

wkf(xk) , (7.3)

where

wk =
∫ b

a

Lk(x)dx , k = 0, 1, . . . , n . (7.4)

The values wk, k = 0, 1, . . . , n, are referred to as the quadrature
weights, while the interpolation points xk, k = 0, 1, . . . , n, are called
the quadrature points. The numerical quadrature rule (7.3), with
quadrature weights (7.4) and equally spaced quadrature points, is called
the Newton–Cotes formula of order n. In order to illustrate the
general idea, we consider two simple examples.
Trapezium rule. In this case we take n = 1, so that x0 = a, x1 = b;

the Lagrange interpolation polynomial of degree 1 for the function f is
simply

p1(x) = L0(x)f(a) + L1(x)f(b)

=
x − b

a − b
f(a) +

x − a

b − a
f(b)

=
1

b − a
[(b − x)f(a) + (x − a)f(b)] .

Integrating p1(x) from a to b yields∫ b

a

f(x)dx ≈ b − a

2
[f(a) + f(b)] .

This numerical integration formula is called the trapezium rule. The
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terminology stems from the fact that the expression on the right is the
area of the trapezium with vertices (a, 0), (b, 0), (a, f(a)), (b, f(b)).
Simpson’s rule.1 A slightly more sophisticated quadrature rule is

obtained by taking n = 2. In this case x0 = a, x1 = (a + b)/2 and
x2 = b, and the function f is approximated by a quadratic Lagrange
interpolation polynomial.

The quadrature weights are calculated from

w0 =
∫ b

a

L0(x)dx

=
∫ b

a

(x − x1)(x − x2)
(x0 − x1)(x0 − x2)

dx

=
∫ 1

−1

t(t − 1)
2

b − a

2
dt

=
b − a

6
,

where it is convenient to make the change of variable

x =
b − a

2
t +

b + a

2
.

Similarly, w1 = 4
6 (b−a), and it is easy to see that w2 = w0 by symmetry.

This gives ∫ b

a

f(x)dx ≈ b − a

6

[
f(a) + 4f

(
a + b

2

)
+ f(b)

]
,

a numerical integration formula known as Simpson’s rule.
It is very important to notice that the weights wk defined in (7.4)

depend only on n and k, not on the function f . Their values can therefore
1 Thomas Simpson (20 August 1710, Market Bosworth, Leicestershire, England –
14 May 1761, Market Bosworth, Leicestershire, England) was a weaver by training
who taught mathematics in the London coffee-houses. His two-volume work enti-
tled The Doctrine and Application of Fluxions published in 1750 contains some of
the work that Cotes hoped to publish with Cambridge University Press but was
prevented by his premature death. In 1796 fellow mathematician Charles Hutton
gave the following description of Simpson: It has been said that Mr Simpson fre-
quented low company, with whom he used to guzzle porter and gin: but it must
be observed that the misconduct of his family put it out of his power to keep the
company of gentlemen, as well as to procure better liquor. On a related subject:
in his New Stereometry of Wine Barrels (Nova stereometria doliorum vinariorum
(1615)), the astronomer Johannes Kepler (1571–1630) approximated the volumes
of many three-dimensional solids, each of which was formed by revolving a two-
dimensional region around an axis line. For each of these volumes of revolution,
he subdivided the solid into many thin slices the sum of whose volumes then
approximated the desired total volume.



204 7 Numerical integration – I

be calculated in advance, as in the trapezium rule and Simpson’s rule.
The evaluation of the approximation to the integral (7.1) is then a trivial
matter; it is only necessary to compute f(xk) at each of the quadrature
points xk, k = 0, 1, . . . , n, multiply by the known weights wk for k =
0, 1, . . . , n, and form the sum on the right-hand side of (7.3).

7.3 Error estimates

Our next task is to estimate the size of the error in the numerical in-
tegration formula (7.3), that is, the error that has been committed by
integrating the interpolating Lagrange polynomial of f instead of f it-
self. The error in (7.3) is defined by

En(f) =
∫ b

a

f(x)dx −
n∑
k=0

wkf(xk) .

The next theorem provides a useful bound on En(f) under the additional
hypothesis that the function f is sufficiently smooth.

Theorem 7.1 Let n ≥ 1. Suppose that f is a real-valued function,
defined and continuous on the interval [a, b], and let f (n+1) be defined
and continuous on [a, b]. Then,

|En(f)| ≤ Mn+1

(n + 1)!

∫ b

a

|πn+1(x)| dx , (7.5)

where Mn+1 = maxζ∈[a,b] |f (n+1)(ζ)| and πn+1(x) = (x−x0) . . . (x−xn).

Proof Recalling the definition of the weights wk from (7.4), we can write
En(f) as follows:

En(f) =
∫ b

a

f(x) dx −
∫ b

a

(
n∑
k=0

Lk(x)f(xk)

)
dx

=
∫ b

a

[f(x) − pn(x)] dx .

Thus,

|En(f)| ≤
∫ b

a

|f(x) − pn(x)| dx .

The desired error estimate (7.5) follows by inserting (6.8) into the right-
hand side of this inequality.
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Let us use this theorem to estimate the size of the error which arises
from applying the trapezium rule to the integral

∫ b
a
f(x) dx. In this case,

with n = 1 and π2(x) = (x − a)(x − b), the bound (7.5) reduces to

|E1(f)| ≤ M2

2

∫ b

a

|(x − a)(x − b)|dx

=
M2

2

∫ b

a

(b − x)(x − a) dx

=
(b − a)3

12
M2 . (7.6)

An analogous but slightly more tedious calculation shows that, for
Simpson’s rule,

|E2(f)| ≤ M3

6

∫ b

a

|(x − a)(x − (a + b)/2)(x − b)| dx

=
(b − a)4

196
M3 . (7.7)

Unfortunately, (7.7) gives a considerable overestimate of the error in
Simpson’s rule; in particular it does not bring out the fact that E2(f) = 0
whenever f is a polynomial of degree 3. The next theorem will allow us
to give a sharper bound on the error in Simpson’s rule which illustrates
this fact. More generally, it is quite easy to prove that when n is odd
the Newton–Cotes formula (7.3) (with wk defined by (7.4)) is exact for
all polynomials of degree n, while when n is even it is also exact for all
polynomials of degree n + 1 (see Exercise 2 at the end of the chapter).

Theorem 7.2 Suppose that f is a real-valued function, defined and
continuous on the interval [a, b], and that f iv = f (4), the fourth derivate
of f , is continuous on [a, b]. Then,∫ b

a

f(x) dx − b − a

6
[f(a) + 4f((a + b)/2) + f(b)] = − (b − a)5

2880
f iv(ξ) ,

(7.8)
for some ξ in (a, b).

Proof Making the change of variable

x =
a + b

2
+

b − a

2
t , t ∈ [−1, 1] ,
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and defining the function t �→ F (t) by F (t) = f(x), we see that∫ b

a

f(x)dx − b − a

6
[f(a) + 4f((a + b)/2) + f(b)]

=
b − a

2

(∫ 1

−1

F (τ)dτ − 1
3
[F (−1) + 4F (0) + F (1)]

)
. (7.9)

We now introduce the function t �→ G(t) by

G(t) =
∫ t

−t
F (τ) dτ − t

3
[F (−t) + 4F (0) + F (t)] , t ∈ [−1, 1] ;

the right-hand side of (7.9) is then simply 1
2 (b − a)G(1).

The remainder of the proof is devoted to showing that 1
2 (b − a)G(1)

is, in turn, equal to the right-hand side of (7.8) for some ξ in (a, b). To
do so, we define

H(t) = G(t) − t5G(1) , t ∈ [−1, 1] ,

and apply Rolle’s Theorem repeatedly to the function H. Noting that
H(0) = H(1) = 0, we deduce that there exists ζ1 ∈ (0, 1) such that
H ′(ζ1) = 0. But it is easy to show that H ′(0) = 0, so there exists
ζ2 ∈ (0, ζ1) such that H ′′(ζ2) = 0. Again we see that H ′′(0) = 0, so
there exists ζ3 ∈ (0, ζ2) such that H ′′′(ζ3) = 0. Now,

G′′′(t) = − t

3
[F ′′′(t) − F ′′′(−t)] ,

and therefore

H ′′′(ζ3) = −ζ3

3
[F ′′′(ζ3) − F ′′′(−ζ3)] − 60ζ2

3G(1) .

Applying the Mean Value Theorem to the function F ′′′ this shows that
there exists ζ4 ∈ (−ζ3, ζ3) such that

H ′′′(ζ3) = −ζ3

3
[2ζ3F

iv(ζ4)] − 60ζ2
3G(1)

= −2ζ2
3

3
[F iv(ζ4) + 90G(1)] .

Since H ′′′(ζ3) = 0 and ζ3 �= 0, this means that

G(1) = − 1
90

F iv(ζ4) = − (b − a)4

1440
f iv(ξ) ,

and the required result follows.
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Theorem 7.2 yields the following bound on the error in Simpson’s rule:

|E2(f)| ≤ (b − a)5

2880
M4 . (7.10)

This is a considerable improvement on the earlier bound (7.7); when f

is a polynomial of degree 3, the bound correctly shows that E2(f) = 0.
There is a great variety of quadrature rules constructed in the same

way as the Newton–Cotes formulae. For example, it may sometimes be
useful to involve quadrature points outside the interval of integration,
as in ∫ 1

0

f(x) dx ≈ c−1f(−1) + c0f(0) + c1f(1) . (7.11)

The coefficients are determined similarly as in (7.4), but now x−1 = −1,
x0 = 0, x1 = 1 and

L−1(x) = 1
2x(x − 1) , L0(x) = 1 − x2 , L1(x) = 1

2x(x + 1) .

Hence,

c−1 =
∫ 1

0

L−1(x) dx

=
∫ 1

0

x(x − 1)
2

dx

= − 1
12 .

In a similar way we find that c0 = 2
3 , c1 = 5

12 .
The quadrature rule (7.11) is then exact when f is any polynomial

of degree 2 or less. More generally, for any three times continuously
differentiable function f , Theorem 7.1 extends in an obvious way to give∣∣∣∣

∫ 1

0

f(x) dx + 1
12f(−1) − 2

3f(0) − 5
12f(1)

∣∣∣∣
≤ M3

6

∫ 1

0

|(x + 1)x(x − 1)| dx

≤ M3

24
;

but there is an important difference. To justify this estimate we now need
a condition on f outside the interval of integration: we must require that
f and f ′′′ are continuous on [−1, 1], and M3 is the maximum of |f ′′′(x)|
on [−1, 1]. More generally, the conditions must hold on an interval which
contains the interval of integration, and also all the quadrature points.
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Table 7.1. In is the result of the Newton–Cotes formula of degree n for
the approximation of the integral (7.12)

n In

1 0.38462
2 6.79487
3 2.08145
4 2.37401
5 2.30769
6 3.87045
7 2.89899
8 1.50049
9 2.39862

10 4.67330
11 3.24477
12 −0.31294
13 1.91980
14 7.89954
15 4.15556

7.4 The Runge phenomenon revisited

By looking at the right-hand side of the error bound (7.5) we may be led
to believe that by increasing n, that is by approximating the integrand by
Lagrange interpolation polynomials of increasing degree and integrating
these exactly, we shall reduce the size of the quadrature error En(f).
However, this is not always the case, even for very smooth functions
f . An example of this behaviour uses the same function as in Section
6.3; Table 7.1 gives the results of applying Newton–Cotes formulae of
increasing degree to the evaluation of the integral∫ 5

−5

1
1 + x2

dx . (7.12)

These results do not evidently converge as n increases, and in fact they
eventually increase without bound. This behaviour is related to the fact
that the weights wj in the Newton–Cotes formula are not all positive
when n > 8. We shall return to this point in Theorem 10.2.

A better approach to improving accuracy is to divide the interval
[a, b] into an increasing number of subintervals of decreasing size, and
then to use a numerical integration formula of fixed order n on each
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of the subintervals. Quadrature rules based on this approach are called
composite formulae; in the next section we shall describe two examples.1

7.5 Composite formulae

We shall consider only some very simple composite quadrature rules:
the composite trapezium rule and the composite Simpson rule.

Suppose that f is a function, defined and continuous on a nonempty
closed interval [a, b] of the real line. In order to construct an approxi-
mation to ∫ b

a

f(x) dx ,

we now select an integer m ≥ 2 and divide the interval [a, b] into m equal
subintervals, each of width h = (b − a)/m, so that∫ b

a

f(x) dx =
m∑
i=1

∫ xi

xi−1

f(x) dx , (7.13)

where

xi = a + ih = a +
i

m
(b − a) , i = 0, 1, . . . ,m .

Each of the integrals is then evaluated by the trapezium rule,∫ xi

xi−1

f(x) dx ≈ 1
2
h[f(xi−1) + f(xi)] ; (7.14)

summing these over i = 1, 2, . . . ,m leads to the following definition.

Definition 7.1 (Composite trapezium rule)

∫ b

a

f(x) dx ≈ h

[
1
2
f(x0) + f(x1) + · · · + f(xm−1) +

1
2
f(xm)

]
. (7.15)

1 The historical roots of composite formulae may be traced back to the work of Ke-
pler cited in the footnote to Simpson’s method earlier on in this chapter, although
the idea of computing volumes of two- and three-dimensional geometrical objects
by subdivision was already present in the work of Archimedes of Syracuse (287 BC,
Syracuse (now in Italy) – 212 BC, Syracuse (now in Italy)). Archimedes’ long-lost
book known as the Palimpsest, containing his geometrical studies, resurfaced at an
auction at Christie’s of New York in 1998 and is now in the care of the Walters Art
Gallery in Baltimore, Maryland, USA: http://www.thewalters.org/archimedes/
frame.html.
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The error in the composite trapezium rule can be estimated by using
the error bound (7.6) for the trapezium rule on each individual subin-
terval [xi−1, xi], i = 1, 2, . . . ,m. For this purpose, let us define

E1(f) =
∫ b

a

f(x) dx − h
[

1
2f(x0) + f(x1) + · · · + f(xm−1) + 1

2f(xm)
]

=
m∑
i=1

[∫ xi

xi−1

f(x) dx − 1
2h [f(xi−1) + f(xi)]

]
.

Applying (7.6) to each of the terms under the summation sign we obtain

|E1(f)| ≤ 1
12

h3
m∑
i=1

(
max

ζ∈[xi−1,xi]
|f ′′(ζ)|

)

≤ (b − a)3

12m2
M2 , (7.16)

where M2 = maxζ∈[a,b] |f ′′(ζ)|.
For Simpson’s rule, let us suppose that the interval [a, b] has been

divided into 2m intervals by the points xi = a + ih, i = 0, 1, . . . , 2m,
with m ≥ 2 and

h =
b − a

2m
,

and let us apply Simpson’s rule on each of the intervals [x2i−2, x2i],
i = 1, 2, . . . ,m, giving∫ b

a

f(x) dx =
m∑
i=1

∫ x2i

x2i−2

f(x) dx

≈
m∑
i=1

2h
6

[f(x2i−2) + 4f(x2i−1) + f(x2i)] .

This leads to the following definition.

Definition 7.2 (Composite Simpson rule)

∫ b

a

f(x) dx ≈ h

3
[f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + · · ·

+ 2f(x2m−2) + 4f(x2m−1) + f(x2m)] . (7.17)

A schematic view of the pattern in which the coefficients 1, 4 and 2
appear in the composite Simpson rule is shown in Figure 7.1.
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1     4     2     4      2     4     2     4     2     4      2     4     1

Fig. 7.1. Quadrature weights for the composite Simpson rule: the integers
1, 4, 2, 4, . . . , 1, when multiplied by h/3, where h = (b − a)/2m, provide the
quadrature weights. This figure corresponds to taking m = 6.

In order to estimate the error in the composite Simpson rule, we pro-
ceed in the same way as for the composite trapezium rule. Let us define

E2(f) =
∫ b

a

f(x) dx −
m∑
i=1

h

3
[f(x2i−2) + 4f(x2i−1) + f(x2i)]

=
m∑
i=1

[∫ x2i

x2i−2

f(x) dx − h

3
[f(x2i−2) + 4f(x2i−1) + f(x2i)]

]
.

Applying (7.10) to each individual term in the sum and recalling that
b − a = 2mh we obtain the following error bound:

|E2(f)| ≤ (b − a)5

2880m4
M4 , (7.18)

where M4 = maxζ∈[a,b] |f iv(ζ)|.
The composite rules (7.15) and (7.17) provide greater accuracy than

the basic formulae considered in Section 7.2; this is clearly seen by com-
paring the error bounds (7.16) and (7.18) for the two composite rules
with (7.6) and (7.8), the error estimates for the basic trapezium rule
and Simpson rule respectively. The inequalities (7.16) and (7.18) indi-
cate that, as long as the function f is sufficiently smooth, the errors in
the composite rules can be made arbitrarily small by choosing a suffi-
ciently large number of subintervals.

7.6 The Euler–Maclaurin expansion

We have seen in (7.16) that the error in the composite trapezium rule is
bounded by a term involving 1/m2, where m is the number of subdivi-
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sions of the interval [a, b]; the Euler1–Maclaurin2 expansion expresses
this error as a series in powers of 1/m2, and makes it possible to improve
accuracy by extrapolation methods.

We first define a sequence of polynomials.

Definition 7.3 Consider the sequence of polynomials qr, r = 1, 2, . . .,
defined by their properties, as follows:

(i) qr is a polynomial of degree r;
(ii) for each positive integer r, q′r+1 = qr;
(iii) qr is an odd function if r is odd, and an even function if r is

even;
(iv) if r > 1 is odd, then qr(−1) = 0 and qr(1) = 0;
(v) q1(t) = −t.

Using these conditions it is easy to construct the polynomials qr in
succession. From (v) and (ii) we get

q2(t) = − 1
2 t

2 + A2 , q3(t) = − 1
6 t

3 + A2t + A3 ,

where A2 and A3 are constants. From (iii) we see that A3 = 0; then,
from (iv) it follows that A2 = 1

6 . Hence,

q2(t) = − 1
2 t

2 + 1
6 , q3(t) = − 1

6 t
3 + 1

6 t .

We can then go on to construct q4 and q5, and so on.
1 Leonhard Euler (15 April 1707, Basel, Switzerland – 18 September 1783, St Pe-
tersburg, Russia) was the most prolific mathematical writer of all times, who made
fundamental contributions to many branches of mathematics despite being totally
blind for the last third of his life. Euler and his wife Katharina had 13 children:
he claimed to have made his greatest discoveries while he was holding a baby in
his arms and the other children were playing around his feet. Euler studied the
calculus of variations, differential geometry, number theory, differential equations,
continuum mechanics, astronomy, lunar theory, the three-body problem, elasticity,
acoustics, the wave theory of light, hydraulics, and music. In his Theory of the
Motions of Rigid Bodies published in 1765 he laid the foundation of analytical
mechanics. Euler integrated Leibniz’s differential calculus and Newton’s method
of fluxions into mathematical analysis. We owe him the concepts of beta and
gamma functions and the notion of integrating factor for differential equations;
he is responsible for the notation e for the base of natural logarithm, f(x) for a
function, π for pi,

∑
for summation, i for the square root of −1, and ∆y and ∆2

y
for the first and second finite differences.

2 Colin Maclaurin (February 1698, Kilmodan, Argyllshire, Scotland – 14 June 1746,
Edinburgh, Scotland) became a student at the University of Glasgow at the age
of 11 and completed his studies at the age of 14. In 1719, at the age of 21, he
became Fellow of the Royal Society. His major work of 763 pages in two volumes,
entitled A Treatise of Fluxions, was the first systematic exposition of Newton’s
ideas. Notable is Maclaurin’s work on elliptic integrals, maxima and minima, and
the attraction of ellipsoids.
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Theorem 7.3 Suppose that the function g is defined and continuous on
the interval [−1, 1] and has a continuous derivative of order 2k over this
interval. Then,∫ 1

−1

g(t) dt − [g(−1) + g(1)] =
∫ 1

−1

−t g′(t) dt

=
k∑
r=1

q2r(1)[g(2r−1)(1) − g(2r−1)(−1)] −
∫ 1

−1

q2k(t)g(2k)(t) dt . (7.19)

Proof We observe that
∫ 1

−1
g(t) dt − [g(−1) + g(1)] is the error in the

approximation of
∫ 1

−1
g(t)dt by the trapezium rule. Integration by parts

gives ∫ 1

−1

−t g′(t) dt = −[g(−1) + g(1)] +
∫ 1

−1

g(t) dt ,

which establishes the first equality in (7.19). By repeated integration by
parts in the other direction, and using the fact that q1(t) = −t, we then
have∫ 1

−1

−t g′(t) dt = q2(1)g′(1) − q2(−1)g′(−1) −
∫ 1

−1

q2(t)g′′(t)dt

=
[
q2(t)g′(t) − q3(t)g′′(t) + · · · + q2k(t)g(2k−1)(t)

]1

−1

−
∫ 1

−1

q2k(t)g(2k)(t) dt .

The required result follows from properties (iii) and (iv) of the qr.

Theorem 7.4 (Euler–Maclaurin expansion) Suppose that the real-
valued function f is defined and continuous on the interval [a, b] and
has a continuous derivative of order 2k on this interval. Consider the
subdivision of [a, b] into m ≥ 1 closed intervals [xi−1, xi], i = 1, . . . ,m,
where xi = a+ ih, i = 0, 1, . . . ,m, and h = (b−a)/m. Writing T (m) for
the result of approximating the integral I =

∫ b
a
f(x)dx by the composite

trapezium rule with the m subintervals [xi−1, xi], i = 1, . . . ,m,

I − T (m) =
k∑
r=1

crh
2r[f (2r−1)(b) − f (2r−1)(a)]

−
(
h

2

)2k m∑
i=1

∫ xi

xi−1

q2k(t)f (2k)(x) dx , (7.20)
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where t = t(x) = −1 + 2
h (x − xi−1) for x ∈ [xi−1, xi], i = 1, . . . ,m, and

cr = q2r(1)/22r for r = 1, . . . , k.

Proof We express the integral as a sum over the m subintervals [xi−1, xi],
i = 1, . . . ,m, as in (7.13). In the interval [xi−1, xi] we change the variable
by writing x = xi−1 + h(t + 1)/2, so that∫ xi

xi−1

f(x)dx =
h

2

∫ 1

−1

g(t)dt ,

where f(x) = g(t). According to Theorem 7.3, then,∫ xi

xi−1

f(x)dx − h

2
[f(xi−1) + f(xi)]

=
h

2

{∫ 1

−1

g(t)dt − [g(−1) + g(1)]
}

=
h

2

{
k∑
r=1

q2r(1)[g(2r−1)(1) − g(2r−1)(−1)]

−
∫ 1

−1

q2k(t)g(2k)(t)dt
}

.

On noting that g(�)(t) = (h/2)�f (�)(x), $ = 1, 2, . . . , 2k, dt = (2/h) dx,
summation over all the subintervals [xi−1, xi], for i = 1, . . . ,m, gives the
required result. The important point is the symmetry of the polynomials
qr, which ensures that q2r(1) = q2r(−1), so that all the derivatives of f

at the internal points xi cancel in the course of summation, leaving only
the derivatives at a and b.

Remark 7.1 By successively computing the polynomials qr(t), we can
determine the values of cr = q2r(1)/22r, r = 1, 2, 3, . . .. For example,

c1 = − 1
12 , c2 = 1

720 , c3 = − 1
30240 , c4 = 1

1209600 , c5 = − 1
47900160 , . . . .

It can be shown that cr = − B2r
(2r)! for all r = 1, 2, 3, . . ., where B2r are

the Bernoulli numbers1 with even index, which can be determined from
1 Jacob Bernoulli the elder (27 December 1654, Basel, Switzerland – 16 August
1705, Basel, Switzerland) was one of the first mathematicians to recognise the
significance of the work of Newton and Leibniz on differential and integral calcu-
lus. Bernoulli contributed to the theory of infinite series, mechanics, calculus of
variations, mechanics, and is also known in probability theory for his Law of Large
Numbers.
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the Taylor series expansion

x
2 coth

(
x
2

)
=

∞∑
r=0

B2r x
2r

(2r)!
.

Easier still, typing c[6]=-bernoulli(12)/12!; at the Maple command
line gives c6 = 691

1307674368000 ; c7, c8, . . . can be found in the same way.

An interesting consequence of Theorem 7.4 concerns the numerical
integration of smooth periodic functions. Suppose that f is a continuous
function defined on (−∞,∞) such that all derivatives of f , up to and
including order 2k, are defined and continuous on (−∞,∞), and f is
periodic on (−∞,∞) with period b − a; i.e., f(x + b − a) − f(x) = 0
for all x ∈ R. Hence, by successive differentiation of this equality and
taking x = a we deduce that, in particular,

f (2r−1)(b) − f (2r−1)(a) = 0 for r = 1, 2, . . . , k .

Therefore, according to (7.20), we have that

I − T (m) = O(h2k) .

The fact that for k � 1 this integration error is much smaller than the
O(h2) error that will be observed in the case of a nonperiodic function
indicates that the composite trapezium rule is particularly well suited
for the numerical integration of smooth periodic functions.

A second application of the Euler–Maclaurin expansion concerns ex-
trapolation methods. This subject will be discussed in the next section.

7.7 Extrapolation methods

In general the calculation of the higher derivatives involved in the Euler–
Maclaurin expansion (7.20) is not possible. However, the existence of the
expansion allows us to eliminate successive terms by repeated calculation
of the trapezium rule approximation.

For example, the case k = 2 of (7.20) may be written in the form∫ b

a

f(x)dx − T (m) = C1h
2 + O(m−4) ,

where C1 = c1[f ′(b) − f ′(a)] and h = (b − a)/m. This also means that∫ b

a

f(x)dx − T (2m) = C1(h/2)2 + O(m−4) .
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We can eliminate the term in h2 from these two equalities, giving∫ b

a

f(x)dx =
4T (2m) − T (m)

3
+ O(h4) .

The same elimination process could be used for any two values of m,
from the calculation of T (m1) and T (m2); the advantage of using m and
2m is that in the computation of T (2m) half the required values of f(xi)
are already known from T (m), and we do not have to calculate them
again. This process of eliminating the term in h2 from the expansion
of the error is known as Richardson extrapolation1 or h2 extrap-
olation. It is easy to extend the process to higher-order terms. For
example, ∫ b

a

f(x)dx − T (m) = C1h
2 + C2h

4 + C3h
6 + O(h8) .

Hence∫ b

a

f(x)dx − 4T (2m) − T (m)
3

= − 1
4C2h

4 − 5
16C3h

6 + O(h8) ,

which leads to∫ b

a

f(x)dx − 16T1(2m) − T1(m)
15

= O(h6) ,

where

T1(m) =
4T (2m) − T (m)

3
.

Therefore,

T2(m) =
16T1(2m) − T1(m)

15

approximates the integral
∫ b
a
f(x)dx to accuracy O(h6). Adopting the

notational convention

T0(m) = T (m)

and proceeding recursively,
1 Lewis Fry Richardson (11 October 1881, Newcastle upon Tyne, Northumberland,
England – 30 September 1953, Kilmun, Argyllshire, Scotland) studied mathemat-
ics, physics, chemistry, botany and zoology at the Durham College of Science,
and subsequently Natural Science at King’s College in Cambridge. He worked in
the National Physical Laboratory and the Meteorological Office, and was the first
to apply numerical mathematics, in particular the method of finite differences,
to predicting the weather in Weather Prediction by Numerical Process (1922).
The Richardson number, a quantity involving gradients of temperature and wind
velocity is named after him.
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Table 7.2. Romberg table.

m T (m) T1(m) T2(m) T3(m) T4(m)

4 T (4) T1(4) T2(4) T3(4) T4(4)
8 T (8) T1(8) T2(8) T3(8) . . .

16 T (16) T1(16) T2(16) . . .
32 T (32) T1(32) . . .
64 T (64) . . .
. . . . . .

Tk(m) =
4kTk−1(2m) − Tk−1(m)

4k − 1
, k = 1, 2, 3, . . . , (7.21)

will approximate
∫ b
a
f(x)dx to accuracy O(h2k+2), provided of course

that f (2k+2) exists and is continuous on the closed interval [a, b]. This
extrapolation process is known as the Romberg1 integration method.

The intermediate results in Romberg’s method are often arranged in
the form of a table, known as the Romberg table. For example, if we
start with m = 4 subdivisions of the closed interval [a, b], each of length
h = (b − a)/4, and proceed by doubling the number of subdivisions in
each step (and thereby halving the spacing h between the quadrature
points from the previous step), then the associated Romberg table is
as shown in Table 7.2, where we took, successively, m = 4, 8, 16, 32, 64
subdivisions of the interval [a, b] of length h = (b − a)/m each. Af-
ter T0(4) = T (4), . . . , T0(64) = T (64) have been computed, we cal-
culate T1(4), . . . , T1(32) using (7.21) with k = 1, then we compute
T2(4), . . . , T2(16) using (7.21) with k = 2, then T3(4), T3(8) using (7.21)
with k = 3, and finally T4(4) using (7.21) with k = 4. Provided that
the integrand is sufficiently smooth, the numbers in the T (m) column
approximate the integral to within an error O(h2); the numbers in the
T1(m) column to within O(h4), those in the T2(m) column to O(h6),
those in the T3(m) column to O(h8), and those in the T4(m) column to
within O(h10).

1 Werner Romberg, Emeritus Professor at the Institute of Applied Mathematics at
the University of Heidelberg in Germany. The extrapolation process was proposed
in his paper Vereinfachte numerische Integration [German], Norske Vid. Selsk.
Forh., Trondheim 28, 30–36, 1955.
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An example is shown in Table 7.3. This gives the results of calculating
the integral ∫ 1

0

e−2x

1 + 4x
dx

by Romberg’s method; first the trapezium rule is used successively with
m = 4, 8, 16, 32 and 64 equal subdivisions of the interval [0, 1] of length
h = (b−a)/m each. There are then four stages of extrapolation: Stage 1
involves computing T1(m) for m = 4, 8, 16, 32; Stage 2 computes T2(m)
for m = 4, 8, 16; Stage 3 calculates T3(m) for m = 4, 8; and Stage 4
then computes T4(m) for m = 4. Not only does the extrapolation give
an accurate result, but the consistency of the numerical values in the
last two columns gives a good deal of confidence in quoting the result
0.220458 correct to six decimal digits. Note that none of the individual
composite trapezium rule calculations in the T (m) column gives a result
correct to more than three decimal digits – not even T (64) which uses
64 equal subdivisions of [0, 1].

Table 7.3. Romberg table for the calculation of
∫ 1

0
(e−2x/(1 + 4x))dx.

m T (m) T1(m) T2(m) T3(m) T4(m)

4 0.248802 0.221038 0.220470 0.220458 0.220458
8 0.227979 0.220505 0.220459 0.220458

16 0.222374 0.220461 0.220458
32 0.220940 0.220458
64 0.220579

The success of Romberg integration is only justified if the integrand
f satisfies the hypotheses of the Euler–Maclaurin Theorem. As an illus-
tration of this, Table 7.4 shows the result of the same calculation, but
for the integral ∫ 1

0

x1/3dx .

The function x �→ x1/3 is not differentiable at x = 0, so the required
conditions are not satisfied for any extrapolation. The numerical results
bear this out; they are quite close to the correct value, 3/4, but the be-
haviour of the extrapolation does not give any confidence in the accuracy
of the result. In fact the extrapolation has not given much improvement
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on T (64). The calculation of integrals involving this sort of singularity
requires special methods which we shall not discuss here.

We have reached the end of this chapter, but do not despair: the story
about numerical integration rules will continue. In Chapter 10 we shall
discuss a class of quadrature formulae, generally referred to as Gaussian
quadrature rules, which are distinct from the Newton–Cotes formulae
considered here. Before doing so, however, in Chapters 8 and 9 we make
a brief excursion into the realm of approximation theory.

Table 7.4. Romberg table for the calculation of
∫ 1

0
x1/3dx.

m T (m) T1(m) T2(m) T3(m) T4(m)

4 0.708055 0.741448 0.746950 0.748819 0.749534
8 0.733100 0.746606 0.748790 0.749531

16 0.743230 0.748653 0.749520
32 0.747297 0.749465
64 0.748923

7.8 Notes

The material presented in this chapter is classical. For further details on
the theory and practice of numerical integration, we refer to the following
texts:

➧ Philip J. Davis and Philip Rabinowitz, Methods of Numerical
Integration, Second Edition, Computer Science and Applied Mathe-
matics, Academic Press, Orlando, FL, 1984;

➧ Vladimir Ivanovich Krylov, Approximate Calculation of Inte-
grals, translated from Russian by Arthur H. Stroud, ACM Monograph
Series, Macmillan, New York, 1962;

➧ Hermann Engels, Numerical Quadrature and Cubature, Computa-
tional Mathematics and Applications, Academic Press, London, 1980.

The first of these is a standard text and contains a huge bibliography
of more than 1500 entries. Concerning the implementation of numerical
integration rules into mathematical software, the reader is referred to

➧ Arnold R. Krommer and Christoph W. Ueberhuber, Compu-
tational Integration, SIAM, Philadelphia, 1998.
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It includes a comprehensive overview of computational integration tech-
niques based on both numerical and symbolical methods, and an exposi-
tion of some more recent number-theoretical, pseudorandom and lattice
algorithms; these topics are beyond the scope of the present text.

Exercises

7.1 With the usual notation for the Newton–Cotes quadrature for-
mula and using the equally spaced quadrature points xk = a+kh

for k = 0, 1, . . . , n and n ≥ 1, show that wk = wn−k for
k = 0, 1, . . . , n.

7.2 By considering the polynomial [x−(a+b)/2]n+1, n ≥ 1, and the
result of Exercise 1, or otherwise, show that the Newton–Cotes
formula using n + 1 points xk, k = 0, 1, . . . , n, is exact for all
polynomials of degree n + 1 whenever n is even.

7.3 A quadrature formula on the interval [−1, 1] uses the quadrature
points x0 = −α and x1 = α, where 0 < α ≤ 1:∫ 1

−1

f(x)dx ≈ w0f(−α) + w1f(α) .

The formula is required to be exact whenever f is a polynomial
of degree 1. Show that w0 = w1 = 1, independent of the value
of α. Show also that there is one particular value of α for which
the formula is exact also for all polynomials of degree 2. Find
this α, and show that, for this value, the formula is also exact
for all polynomials of degree 3.

7.4 The Newton–Cotes formula with n = 3 on the interval [−1, 1] is∫ 1

−1

f(x) dx ≈ w0f(−1) + w1f(−1/3) + w2f(1/3) + w3f(1) .

Using the fact that this formula is to be exact for all polynomials
of degree 3, or otherwise, show that

2w0 + 2w1 = 2 ,

2w0 + 2
9w2 = 2

3 ,

and hence find the values of the weights w0, w1, w2 and w3.
7.5 For each of the functions 1, x, x2, . . . , x6, find the difference be-

tween
∫ 1

−1
f(x)dx and (i) Simpson’s rule, (ii) the formula derived

in Exercise 4.
Deduce that for every polynomial of degree 5 formula (ii) is
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more accurate than formula (i). Find a polynomial of degree 6
for which formula (i) is more accurate than formula (ii).

7.6 Write down the errors in the approximation of∫ 1

0

x4 dx and
∫ 1

0

x5 dx

by the trapezium rule and Simpson’s rule. Hence find the value
of the constant C for which the trapezium rule gives the correct
result for the calculation of∫ 1

0

(x5 − Cx4) dx ,

and show that the trapezium rule gives a more accurate result
than Simpson’s rule when 15

14 < C < 85
74 .

7.7 Determine the values of cj , j = −1, 0, 1, 2, such that the quadra-
ture rule

Q(f) = c−1f(−1) + c0f(0) + c1f(1) + c2f(2)

gives the correct value for the integral∫ 1

0

f(x) dx

when f is any polynomial of degree 3. Show that, with these
values of the weights cj , and under appropriate conditions on
the function f , ∣∣∣∣

∫ 1

0

f(x) dx − Q(f)
∣∣∣∣ ≤ 11

720M4 .

Give suitable conditions for the validity of this bound, and a
definition of the quantity M4.

7.8 Writing T (m) for the composite trapezium rule defined in (7.15)
and S(2m) for the composite Simpson’s rule defined in (7.17),
show that

S(2m) = 4
3T (2m) − 1

3T (m) .

7.9 Suppose that the function f has a continuous fourth deriva-
tive on the interval [a, b], and that T (m) denotes the composite
trapezium rule approximation to

∫ b
a
f(x)dx, using m subinter-

vals. Show that
T (m) − T (2m)
T (2m) − T (4m)

→ 4 as m → ∞ .
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Using the information in Table 7.3 evaluate this expression for
m = 4, 8, 16.

7.10 With the same notation as in Exercise 9, suppose that the fourth
derivative of f is not continuous on [a, b], but that∫ b

a

f(x)dx − T (m) = A/mα + E(m) ,

where α > 0 and A are constants and limm→∞ mαE(m) = 0.
Determine

lim
m→∞

T (m) − T (2m)
T (2m) − T (4m)

.

Suggest a value of α which is consistent with the values of T (m)
given in Table 7.4.

7.11 The function f has a continuous fourth derivative on the in-
terval [−1, 1]. Construct the Hermite interpolation polynomial
of degree 3 for f using the interpolation points x0 = −1 and
x1 = 1. Deduce that∫ 1

−1

f(x)dx − [f(−1) + f(1)] = 1
3 [f ′(−1) − f ′(1)] + E ,

where

|E| ≤ 2
45 max
x∈[−1,1]

|f iv(x)| .

7.12 Construct the polynomials q4, q5, q6 and q7 given by Definition
7.3. Hence show that, in the notation of Theorem 7.4,

c1 = −1/12 , c2 = 1/720 , c3 = −1/30240 .

7.13 Using the relations

2 sin 1
2x

m∑
j=1

sin jx = cos 1
2x − cos(m + 1

2 )x ,

2 sin 1
2x

m∑
j=1

cos jx = sin(m + 1
2 )x − sin 1

2x ,

where m is a positive integer, show that the composite trapez-
ium rule (7.15) with m subintervals will give the exact result for
each of the integrals∫ π

−π
cos rxdx ,

∫ π

−π
sin rxdx ,
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for any integer value of r which is not a multiple of m.
What values are given by the composite trapezium rule for

these integrals when r = mk and k is a positive integer?
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Polynomial approximation in the ∞-norm

8.1 Introduction

In Chapter 6 we considered the problem of interpolating a function by
polynomials of a certain degree. Here we shall discuss other types of
approximation by polynomials, the overall objective being to find the
polynomial of given degree n which provides the ‘best approximation’
from Pn to a given function in a sense that will be made precise below.

8.2 Normed linear spaces

In order to be able to talk about ‘best approximation’ in a rigorous
manner we need to recall from Chapter 2 the concept of norm; this will
allow us to compare various approximations quantitatively and select the
one which has the smallest approximation error. The definition given in
Section 2.7 applies to a linear space consisting of functions in the same
way as to the finite-dimensional linear spaces considered in Chapter 2.

Definition 8.1 Suppose that V is a linear space over the field R of
real numbers. A nonnegative function ‖ · ‖ defined on V whose value at
f ∈ V is denoted by ‖f‖ is called a norm on V if it satisfies the following
axioms:

� ‖f‖ = 0 if, and only if, f = 0 in V;
� ‖λf‖ = |λ| ‖f‖ for all λ ∈ R, and all f in V;
� ‖f +g‖ ≤ ‖f‖+‖g‖ for all f and g in V (the triangle inequality).

A linear space V, equipped with a norm, is called a normed linear
space.

224
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Throughout this chapter [a, b] will denote a nonempty, bounded and
closed interval of R, and (a, b) will signify a nonempty, bounded open
interval of R.

Example 8.1 The set C[a, b] of real-valued functions f , defined and
continuous on the interval [a, b], is a normed linear space with norm

‖f‖∞ = max
x∈[a,b]

|f(x)| . (8.1)

The norm ‖ · ‖∞ is called the ∞-norm or maximum norm; it can
be thought of as an analogue of the ∞-norm for vectors introduced in
Chapter 2. Thus, for the sake of notational simplicity, here we shall use
the same symbol ‖ · ‖∞ as in Chapter 2, tacitly assuming in what fol-
lows that ‖f‖∞ signifies the ∞-norm of a continuous function f , defined
on a bounded closed interval of the real line (rather than the ∞-norm
of an n-component vector). The choice of the interval [a, b] over which
the norm is taken will always be clear from the context and will not be
explicitly highlighted in our notation. �

Example 8.2 Suppose that w is a real-valued function, defined, con-
tinuous, positive and integrable on the interval (a, b). The set C[a, b] of
real-valued functions f , defined and continuous on [a, b], is a normed
linear space equipped with the norm

‖f‖2 =

(∫ b

a

w(x)|f(x)|2 dx

)1/2

. (8.2)

The norm ‖ ·‖2 is called the 2-norm. The function w is called a weight
function. The assumptions on w allow for singular weight functions,
such as w: x ∈ (0, 1) �→ x−1/2 which is continuous, positive and inte-
grable on the open interval (0, 1), but is not continuous on the closed
interval [0, 1]. The norm (8.2) can be thought of as an analogue of the
2-norm for vectors introduced in Chapter 2; thus, for the sake of sim-
plicity, we use the same notation, ‖ ·‖2, as there. As for the ∞-norm, we
shall not explicitly indicate in our notation the interval over which the
norm is taken. The implied choice of interval [a, b] and weight function
w will be clear from the context. �

The next lemma provides a comparison of the ∞-norm with the 2-
norm, defined by (8.1) and (8.2), respectively, on C[a, b].
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Lemma 8.1 (i) Suppose that the real-valued weight function w is de-
fined, continuous, positive and integrable on the interval (a, b). Then,
for any function f ∈ C[a, b],

‖f‖2 ≤ W ‖f‖∞ , where W =

[∫ b

a

w(x)dx

]1/2

.

(ii) Given any two positive numbers ε (however small) and M (how-
ever large), there exists a function f ∈ C[a, b] such that

‖f‖2 < ε , ‖f‖∞ > M .

Proof The proof is left as an exercise (see Exercise 1).

The definitions (2.33) and (2.34) of the vector norms ‖ · ‖∞ and ‖ · ‖2

on R
n imply that

n−1/2‖v‖∞ ≤ ‖v‖2 ≤ n1/2‖v‖∞ ∀v ∈ R
n , (8.3)

which means that, to all intents and purposes, these two norms are in-
terchangeable.1 Lemma 8.1 indicates that a similar chain of inequalities
cannot possibly hold for the norms (8.1) and (8.2) on C[a, b], and the
choice between them may therefore significantly influence the outcome
of the analysis.

Stimulated by the first axiom of norm, we shall think of f ∈ C[a, b] as
being well approximated by a polynomial p on [a, b] if ‖f − p‖ is small,
where ‖ · ‖ is either ‖ · ‖∞ or ‖ · ‖2 defined, respectively, by (8.1) or
(8.2). In the light of Lemma 8.1, it should come as no surprise that
the mathematical tools for the analysis of smallness of ‖f − p‖∞ are
quite different from those that ensure smallness of ‖f − p‖2. We have
therefore chosen to discuss these two matters separately: the present
chapter focuses on the ∞-norm (8.1), while Chapter 9 explores the use
of the 2-norm (8.2).

Despite the fundamental differences between the norms (8.1) and (8.2)
which we have alluded to above, there is a common underlying feature
which is independent of the choice of norm: if no limitation is imposed
1 The chain of inequalities (8.3) is, in fact, just a particular manifestation of the
following general result from linear algebra. Suppose that V is a finite-dimensional
linear space and let ‖ · ‖′ and ‖ · ‖′′ be two norms on V; then, there exist positive
real numbers m and M such that

m‖v‖′ ≤ ‖v‖′′ ≤M‖v‖′ ∀ v ∈ V .
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on the degree of the approximating polynomial p, then the approximation
error f−p can be made arbitrarily small in both norms. This is a central
result in the theory of polynomial approximation and is formulated in
the next theorem.

Theorem 8.1 (Weierstrass Approximation Theorem1) Suppose
that f is a real-valued function, defined and continuous on a bounded
closed interval [a, b] of the real line; then, given any ε > 0, there exists
a polynomial p such that

‖f − p‖∞ ≤ ε.

Further, if w is a real-valued function, defined, continuous, positive and
integrable on (a, b), then an analogous result holds in the 2-norm over
the interval [a, b] with weight function w.

This is an important theorem in classical analysis, and several proofs
are known. It is evidently sufficient to consider only the interval [0, 1];
a simple change of variable will then extend the proof to any bounded
closed interval [a, b]. For a real-valued function f , defined and continuous
on the interval [0, 1], Bernstein’s proof uses the polynomial

pn(x) =
n∑
k=0

pnk(x)f(k/n) , x ∈ [0, 1] ,

where the Bernstein polynomials pnk(x) are defined by

pnk(x) =
(

n

k

)
xk(1 − x)n−k , x ∈ [0, 1] .

It can then be shown that, for any ε > 0, there exists n = n(ε) such that
‖f − pn‖∞ < ε. The second part of the theorem is a direct consequence
of this result, using part (i) of Lemma 8.1.

The details of the proof are given in Exercise 12. For an alternative
proof, the reader is referred to Theorem 6.3 in M.J.D. Powell, Approxi-
mation Theory and Methods, Cambridge University Press, 1996.
1 Karl Theodor Wilhelm Weierstrass (31 October 1815, Ostenfelde, Bavaria, Ger-
many – 19 February 1897, Berlin, Germany) is frequently referred to as the fa-
ther of modern mathematical analysis. He made fundamental contributions to
the theory of series, functions of real variables, elliptic functions, converging infi-
nite products, the calculus of variations, and the theory of bilinear and quadratic
forms. Weierstrass’ students included Cantor, Frobenius, Gegenbauer, Hölder,
Hurwitz, Killing, Klein, Kneser, Sofia Kovalevskaya, Lie, Mertens, Minkowski,
Mittag-Leffler, Schwarz and Stolz.
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8.3 Best approximation in the ∞-norm
According to the Weierstrass Approximation Theorem any function f in
C[a, b] can be approximated arbitrarily well from the set of all polynomi-
als. Clearly, if instead of the set of all polynomials we restrict ourselves
to the set of polynomials Pn of degree n or less, with n fixed, then it
is no longer true that, for any f ∈ C[a, b] and any ε > 0, there exists
pn ∈ Pn such that

‖f − pn‖∞ < ε .

Consider, for example, the function x �→ sinx defined on the interval
[0, π] and fix n = 0; then ‖f − q‖∞ ≥ 1/2 for any q ∈ P0, and therefore
there is no q in P0 such that ‖f − q‖∞ < 1/2. A similar situation will
arise if P0 is replaced by Pn, with the polynomial degree n fixed.1

It is therefore relevant to enquire just how well a given function f in
C[a, b] may be approximated by polynomials of a fixed degree n ≥ 0.
This question leads us to the following approximation problem.

(A) Given that f ∈ C[a, b] and n ≥ 0, fixed, find pn ∈ Pn such that

‖f − pn‖∞ = inf
q∈Pn

‖f − q‖∞ ;

such a polynomial pn is called a polynomial of best approximation
of degree n to the function f in the ∞-norm.

The next theorem establishes the existence of a polynomial of best
approximation, showing, in particular, that the infimum of ‖f − q‖∞
over q ∈ Pn is attained. We shall consider the question of uniqueness of
the polynomial of best approximation later on, in Theorem 8.5.

Theorem 8.2 Given that f ∈ C[a, b], there exists a polynomial pn ∈ Pn
such that ‖f − pn‖∞ = minq∈Pn

‖f − q‖∞.

Proof Let us define the function (c0, . . . , cn) ∈ R
n+1 �→ E(c0, . . . , cn) of

n + 1 real variables by

E(c0, . . . , cn) = ‖f − qn‖∞, where qn(x) = c0 + · · · + cnx
n.

1 This is due to the fact that, for any fixed n, Pn is a closed subset of C[a, b]; i.e.,
if f does not belong to Pn, there exists ε > 0 such that

inf
q∈Pn

‖f − q‖∞ > ε .

On the other hand, by the Weierstrass Theorem, the set of all polynomials is dense
in C[a, b]: any continuous function f can be represented as a limit of a uniformly
convergent sequence of polynomials (of, in general, increasing degree) on [a, b].
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We shall first show that E is continuous; this will imply that E attains
its bounds on any bounded closed set in R

n+1. We shall then construct
a nonempty bounded closed set S ⊂ R

n+1 such that the lower bound of
E on S is the same as its lower bound over the whole of R

n+1.
To show that E is continuous at each point (c0, . . . , cn) ∈ R

n+1, con-
sider any (δ0, . . . , δn) ∈ R

n+1 and define the polynomial ηn ∈ Pn by
ηn(x) = δ0 + · · · + δnx

n. We see from the triangle inequality that

E(c0 + δ0, . . . , cn + δn) = ‖f − (qn + ηn)‖∞
≤ ‖f − qn‖∞ + ‖ηn‖∞
= E(c0, . . . , cn) + ‖ηn‖∞ .

Now, for any given positive number ε, choose δ = ε/(1 + · · · + Kn),
where K = max{|a|, |b|}. Consider any (δ0, . . . , δn) ∈ R

n+1 such that
|δi| ≤ δ for all i = 0, . . . , n. Then,

E(c0 + δ0, . . . , cn + δn) − E(c0, . . . , cn) ≤ ‖ηn‖∞
≤ max
x∈[a,b]

(|δ0| + |δ1||x| + · · · + |δn||x|n)

≤ δ(1 + · · · + Kn)

= ε . (8.4)

Similarly,

E(c0, . . . , cn) = ‖f − qn‖∞ = ‖f − (qn + ηn) + ηn‖∞
≤ ‖f − (qn + ηn)‖∞ + ‖ηn‖∞
≤ E(c0 + δ0, . . . , cn + δn) + ε ,

and therefore

E(c0, . . . , cn) − E(c0 + δ0, . . . , cn + δn) ≤ ε . (8.5)

From (8.4) and (8.5) we deduce that

|E(c0 + δ0, . . . , cn + δn) − E(c0, . . . , cn)| ≤ ε

for all (δ0, . . . , δn) ∈ R
n+1 such that |δi| ≤ δ, i = 0, . . . , n, where now

δ = ε/(1 + · · · + Kn) and K = max{|a|, |b|}. Hence E is continuous at
(c0, . . . , cn) ∈ R

n+1. Since (c0, . . . , cn) is an arbitrary point in R
n+1, it

follows that E is continuous on the whole of R
n+1.

Let us denote by S the set of all points (c0, . . . , cn) in R
n+1 such that

E(c0, . . . , cn) ≤ ‖f‖∞ + 1. The set S is evidently bounded and closed
in R

n+1; further, S is nonempty since E(0, . . . , 0) = ‖f‖∞ ≤ ‖f‖∞ + 1,
so that (0, . . . , 0) ∈ S. Hence the continuous function E attains its
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lower bound over the set S; let us denote this lower bound by d and let
(c∗0, . . . , c

∗
n) denote the point in S where it is attained.

Since (0, . . . , 0) ∈ S, it follows that

d = min
(c0,...,cn)∈S

E(c0, . . . , cn) ≤ E(0, . . . , 0) = ‖f‖∞ .

According to the definition of S,

E(c0, . . . , cn) > ‖f‖∞ + 1 ∀ (c0, . . . , cn) ∈ R
n+1 \ S .

Hence, if (c0, . . . , cn) /∈ S, then E(c0, . . . , cn) > d + 1 > d. Thus, the
lower bound d of the function E over the set S is the same as the lower
bound of E over all values of (c0, . . . , cn) ∈ R

n+1. The lower bound d is
attained at a point (c∗0, . . . , c

∗
n) in S; letting p∗n(x) = c∗0 + · · · + c∗nx

n, we
find that d = ‖f − p∗n‖∞ and therefore p∗n is the required polynomial of
best approximation of degree n to the function f in the ∞-norm.

Due to the nonconstructive nature of its proof, the last theorem does
not actually tell us how to find a polynomial of best approximation of
degree n for a given function f ∈ C[a, b]. Therefore, our goal is now to
devise a constructive characterisation of the property ‘pn is a polynomial
of best approximation of degree n to the function f in the ∞-norm’.
Before doing so, however, let us simplify our terminology.

Writing the polynomial q ∈ Pn in the form

qn(x) = c0 + · · · + cnx
n ,

we want to choose the coefficients cj , j = 0, . . . , n, so that they minimise
the function E: (c0, . . . , cn) �→ E(c0, . . . , cn) defined by

E(c0, . . . , cn) = ‖f − q‖∞
= max

x∈[a,b]
|f(x) − c0 − · · · − cnx

n|

over R
n+1. Since the polynomial of best approximation is to minimise

(over q ∈ Pn) the maximum absolute value of the error f(x)−q(x) (over
x ∈ [a, b]), it is often referred to as the minimax polynomial; from
now on, for the sake of brevity, we shall use the latter terminology.

Before we embark on the constructive characterisation of the minimax
polynomial of a continuous function, let us consider a simple example
which illustrates some of its key properties.

Example 8.3 Suppose that f ∈ C[0, 1], and that f is strictly monotonic
increasing on [0, 1]. We wish to find the minimax polynomial p0 of degree
zero for f on [0, 1].
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f

x

y

f(1)

f(0)

0 1

p0(x) = -(f(0) + f(1))1
2

Fig. 8.1. Minimax approximation p0 ∈ P0 of a strictly monotonic increasing
continuous function f defined on the interval [0, 1].

The polynomial p0 will be of the form p0(x) ≡ c0, and we need to
determine c0 ∈ R so that

‖f − p0‖∞ = max
x∈[0,1]

|f(x) − c0|

is minimal. Since f is monotonic increasing, f(x) − c0 attains its mini-
mum at x = 0 and its maximum at x = 1; therefore |f(x) − c0| reaches
its maximum value at one of the endpoints of [0, 1], i.e.,

E(c0) = max
x∈[0,1]

|f(x) − c0| = max {|f(0) − c0|, |f(1) − c0|} .

Clearly,

E(c0) =
{

f(1) − c0 if c0 < 1
2 (f(0) + f(1)) ,

c0 − f(0) if c0 ≥ 1
2 (f(0) + f(1)) .

Drawing the graph of the function c0 ∈ R �→ E(c0) ∈ R shows that
the minimum is attained when c0 = 1

2 (f(0) + f(1)). Consequently, the
desired minimax polynomial of degree 0 for the function f is

p0(x) ≡ 1
2 (f(0) + f(1)) , x ∈ [0, 1] .

The function f and its minimax approximation p0 ∈ P0 are depicted in
Figure 8.1.

More generally, if f ∈ C[a, b] (not necessarily monotonic), and ξ and
η denote two points in [a, b] where f attains its minimum and maximum
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values, respectively, then the minimax polynomial of degree 0 to f on
[a, b] is

p0(x) ≡ 1
2 (f(ξ) + f(η)) , x ∈ [a, b] .

�
This example shows that the minimax polynomial p0 of degree zero

for f ∈ C[a, b] has the property that the approximation error f − p0

attains its extrema at two points, x = ξ and x = η, with the error

f(x) − p0(x) =
1
2

(f(x) − f(ξ)) +
1
2

(f(x) − f(η))

being negative at one point, x = ξ, and positive at the other, x = η.
We shall prove that a property of this kind holds in general; the precise
formulation of the general result is given in Theorem 8.4 which is, due
to the oscillating nature of the approximation error, usually referred to
as the Oscillation Theorem: it gives a complete characterisation of the
minimax polynomial and provides a method for its construction. We
begin with a preliminary result due to de la Vallée Poussin.1

Theorem 8.3 (De la Vallée Poussin’s Theorem) Let f ∈ C[a, b]
and r ∈ Pn. Suppose that there exist n + 2 points x0 < · · · < xn+1 in
the interval [a, b], such that f(xi) − r(xi) and f(xi+1) − r(xi+1) have
opposite signs, for i = 0, . . . , n. Then,

min
q∈Pn

‖f − q‖∞ ≥ min
i=0,1,...,n+1

|f(xi) − r(xi)| . (8.6)

Proof The condition on the signs of f(xi)−r(xi) is usually expressed by
saying that f−r has alternating signs at the points xi, i = 0, 1, . . . , n+1.
Let us denote the right-hand side of (8.6) by µ. Clearly, µ ≥ 0; when
µ = 0 the statement of the theorem is trivially true, so we shall assume
that µ > 0. Suppose that (8.6) is false; then, for a minimax polynomial
approximation pn ∈ Pn to the function f we have2

‖f − pn‖∞ = min
q∈Pn

‖f − q‖∞ < µ .

1 Charles Jean Gustave Nicolas, Baron de la Vallée Poussin (14 August 1866, Lou-
vain, Belgium – 2 March 1962, Louvain, Belgium) made important contributions
to approximation theory and number theory, proving in 1892 that the number of
primes less than n is, asymptotically as n→ ∞, n/ lnn.

2 Recall from Theorem 8.2 that such pn exists.
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Therefore,

|pn(xi) − f(xi)| < |r(xi) − f(xi)| , i = 0, 1, . . . , n + 1 .

Now,

r(xi) − pn(xi) = [r(xi) − f(xi)] − [pn(xi) − f(xi)] , i = 0, 1, . . . , n + 1 .

Since the first term on the right always exceeds the second term in
absolute value, it follows that r(xi) − pn(xi) and r(xi) − f(xi) have the
same sign for i = 0, 1, . . . , n+ 1. Hence r − pn, which is a polynomial of
degree n, changes sign n + 1 times. Thus, the assumption that (8.6) is
false has led to a contradiction, and the proof is complete.

Theorem 8.3 gives a clue to formulating a constructive characterisation
of the minimax polynomial: indeed, we shall show that if the quantities
|f(xi)−r(xi)|, i = 0, 1, . . . , n+1, in Theorem 8.3 are all equal to ‖f−r‖∞,
then r ∈ Pn is, in fact, a minimax polynomial of degree n for the function
f on the interval [a, b].

Theorem 8.4 (The Oscillation Theorem) Suppose that f ∈ C[a, b].
A polynomial r ∈ Pn is a minimax polynomial for f on [a, b] if, and only
if, there exists a sequence of n + 2 points xi, i = 0, 1, . . . , n + 1, such
that a ≤ x0 < · · · < xn+1 ≤ b,

|f(xi) − r(xi)| = ‖f − r‖∞ , i = 0, 1, . . . , n + 1 ,

and

f(xi) − r(xi) = −[f(xi+1) − r(xi+1)] , i = 0, . . . , n .

The statement of the theorem is often expressed by saying that f − r

attains its maximum absolute value with alternating signs at the points
xi. The points xi, i = 0, 1, . . . , n + 1, in the Oscillation Theorem are
referred to as critical points.

Proof of theorem If f ∈ Pn, then the result is trivially true, with r = f

and any sequence of n+2 distinct points xi, i = 0, 1, . . . , n+1, contained
in [a, b]. Thus, we shall suppose throughout the proof that f /∈ Pn, i.e.,
f is such that there is no polynomial p ∈ Pn whose restriction to [a, b]
is identically equal to f .

The sufficiency of the condition stated in the theorem is easily shown.
Suppose that the sequence of points xi, i = 0, 1, . . . , n + 1, exists with
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the given properties. Define

L = ‖f − r‖∞ and En(f) = min
q∈Pn

‖f − q‖∞ .

From De la Vallée Poussin’s Theorem, Theorem 8.3, it follows that
En(f) ≥ L. By the definition of En(f) we also see that En(f) ≤
‖f − r‖∞ = L. Hence En(f) = L, and the given polynomial r is a
minimax polynomial.

For the necessity of the condition, suppose that the given polynomial
r ∈ Pn is a minimax polynomial for f on [a, b]. As x �→ |f(x)−r(x)| is a
continuous function on the bounded closed interval [a, b], there exists a
point in [a, b] at which |f(x) − r(x)| attains its maximum value, L > 0;
let

x0 = min{x ∈ [a, b]: |f(x) − r(x)| = L} .

Now, x0 = b would imply that |f(x)−r(x)| = L for all x ∈ [a, b]. As f is
continuous on [a, b], it would then follow that either f(x) = r(x)+L for
all x ∈ [a, b] or f(x) = r(x)−L for all x ∈ [a, b]; either way, we would find
that f ∈ Pn, which is assumed not to be the case. Therefore, x0 ∈ [a, b);
we may assume without loss of generality that f(x0) − r(x0) = L > 0.

Now, we shall prove the existence of the next critical point, x1 ∈ (x0, b]
such that f(x1) − r(x1) = −L. Suppose otherwise, for contradiction;
then, −L < f(x) − r(x) ≤ L for all x in [a, b]. Thus, by the continuity
of f , there exists δ ∈ (0, L) such that −L + δ ≤ f(x) − r(x) ≤ L for all
x ∈ [a, b]. Let us define r∗ ∈ Pn by

r∗(x) = r(x) + ε ,

where 0 < ε < min{δ, L} = δ. Then, for all x ∈ [a, b],

f(x) − r∗(x) = f(x) − r(x) − ε ≥ −L + δ − ε > −L

and

f(x) − r∗(x) = f(x) − r(x) − ε ≤ L − ε < L ,

which means that

‖f − r∗‖∞ < L = ‖f − r‖∞ .

Hence, r∗ ∈ Pn is a better approximation to f on [a, b] than r ∈ Pn is.
This, however, contradicts our hypothesis that r is a polynomial of best
approximation to f on [a, b] from Pn, and implies the existence of

x1 = inf{x ∈ (x0, b]: f(x) − r(x) = −L} .



8.3 Best approximation in the ∞-norm 235

Consequently, f(x1) − r(x1) = −L and x1 ∈ (x0, b], as required; thus if
n = 0, the proof is complete.

Let us, therefore, suppose that n ≥ 1, and successively define the
critical points

xi = inf{x ∈ (xi−1, b]: f(x) − r(x) = (−1)iL} , i = 1, . . . ,m ,

continuing either until xm = b or until we find an xm < b such that
|f(x) − r(x)| < L for all x ∈ (xm, b]. Now, either m ≥ n + 1, and then
the proof is complete as we will have found n + 2 critical points, x0 <

x1 < · · · < xn+1 in [a, b], with the required properties, or 1 ≤ m ≤ n.
To complete the proof of the theorem, we shall show that the second

alternative, 1 ≤ m ≤ n, leads to a contradiction, and is, therefore, not
possible. Let us suppose, for this purpose, that 1 ≤ m ≤ n, and let
η0 = a. Further, observe that, due to the definition of the points xi,
i = 0, 1, . . . ,m,

∃ηi ∈ (xi−1, xi) ∀x ∈ [ηi, xi) |f(x) − r(x)| < L , i = 1, . . . ,m ,

and define ηm+1 = b.
It follows from the choice of the ηi, i = 0, 1, . . . ,m + 1, that the

following properties hold:

(a) |f(x) − r(x)| ≤ L for all x ∈ [ηi, ηi+1] and all i = 0, 1, . . . ,m;
(b) for each i = 0, 1, . . . ,m there exists x ∈ [ηi, ηi+1] (say, x = xi),

such that f(x) − r(x) = (−1)iL;
(c) there exist no i ∈ {0, 1, . . . ,m} and x ∈ [ηi, ηi+1] such that f(x)−

r(x) = (−1)i+1L;
(d) |f(ηi) − r(ηi)| < L for all i = 1, . . . ,m.

Now, let

v(x) =
m∏
i=1

(ηi − x) ,

and define

r∗(x) = r(x) + εv(x) ,

where ε > 0 is a fixed real number, to be chosen below. Since, by
hypothesis, 1 ≤ m ≤ n, it follows that r∗ ∈ Pn. Let us consider the
behaviour of the difference

f(x) − r∗(x) = f(x) − r(x) − εv(x)



236 8 Polynomial approximation in the ∞-norm

on each of the intervals [ηi, ηi+1], i = 0, 1, . . . ,m (whose union is [a, b]).
We shall prove that, for ε > 0 sufficiently small,

|f(x) − r∗(x)| < L = ‖f − r‖∞

for all x in [ηi, ηi+1] and all i = 0, 1, . . . ,m; i.e., ‖f − r∗‖∞ < ‖f − r‖∞,
contradicting the fact that r ∈ Pn is a minimax polynomial for f on
[a, b], and refuting the hypothesis that 1 ≤ m ≤ n.

Take, for example, the interval [η0, η1]. For each x in [η0, η1) we have
v(x) > 0 and therefore, by the definition of r∗(x) and property (a) above,

f(x) − r∗(x) ≤ L − εv(x) < L , x ∈ [η0, η1).

Further, as v(η1) = 0, it follows from (d) that

f(η1) − r∗(η1) = f(η1) − r(η1) < L .

Therefore, f(x) − r∗(x) < L for each x in [η0, η1]. For a lower bound
on f(x) − r∗(x), note that by (a) and (c), f(x) − r(x) > −L for all
x in [η0, η1]. As f − r is a continuous function on [η0, η1], there exists
δ1 ∈ (0, L) such that f(x) − r(x) ≥ −L + δ1 for all x in [η0, η1]. Thus,
for 0 < ε < min{L, δ1, ε1}, where

ε1 =
δ1

maxx∈[η0,η1] |v(x)| ,

we have that

f(x) − r∗(x) ≥ −L + δ1 − ε|v(x)| > −L , x ∈ [η0, η1) .

Further, by (d) above,

f(η1) − r∗(η1) = f(η1) − r(η1) > −L .

Hence, f(x)− r∗(x) > −L for all x ∈ [η0, η1], for 0 < ε < min{L, δ1, ε1}.
Combining the upper and lower bounds on f(x)−r∗(x), we deduce that

|f(x) − r∗(x)| < L = ‖f − r‖∞ , x ∈ [η0, η1] .

Arguing in the same manner on each of the other intervals [ηi, ηi+1],
i = 1, . . . ,m, with 0 < ε < min{L, δi+1, εi+1}, i = 1, . . . ,m, and δi+1

and εi+1 defined analogously to δ1 and ε1 above, we conclude that

|f(x) − r∗(x)| < L = ‖f − r‖∞ , x ∈ [ηi, ηi+1] , i = 0, 1, . . . ,m ,

and hence, for 0 < ε < min{L, δ1, ε1, . . . , δm+1, εm+1},

‖f − r∗‖∞ < L = ‖f − r‖∞ .
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Fig. 8.2. The Oscillation Theorem: the difference f(x) − r(x), where r is a
cubic approximation to a continuous function f , and the effect of replacing
r(x) by r∗(x) = r(x) − εv(x), where v(x) = (η1 − x)(η2 − x).

As r∗ is in Pn, the last inequality contradicts our assumption that r is
a polynomial of best approximation to f on [a, b] from Pn. The contra-
diction rules out the possibility that 1 ≤ m ≤ n. Since m ≥ 1, it follows
that m ≥ n + 1, and the proof is complete.

In the proof of the Oscillation Theorem we supposed, without loss of
generality, that f(x0) − r(x0) = L > 0, where L = ‖f − r‖∞. When
f(x0) − r(x0) = −L < 0 the proof is analogous, except we then define
r∗(x) = r(x) − ε to prove the existence of the critical point x1 ∈ (x0, b]
and, in the discussion of the case 1 ≤ m ≤ n, we let

r∗(x) = r(x) − εv(x) ,

with v(x) and ε > 0 defined as before.
A typical situation is illustrated in Figure 8.2, which represents the

difference f − r, where r is a polynomial approximation of degree 3 to
a continuous function f . Here |f − r| attains its maximum value with
alternate signs at the points P0, P1 and P2, so that m = 2 < n = 3.
Let x0, x1 and x2 denote the x-coordinates of P0, P1, P2, respectively.
Clearly, f(x0) − r(x0) = −L < 0, where L = ‖f − r‖∞. Also, the two
points η1 and η2 are as shown, v(x) = (η1 − x)(η2 − x), and the effect
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of replacing r by r∗(x) = r(x) − εv(x), with ε > 0, is indicated by the
arrows. Since f − r∗ = f − r + εv(x) and v is negative for x ∈ (η1, η2)
and positive outside (η1, η2), |f − r∗| will be smaller than |f − r| at
each of the points Pi, i = 0, 1, 2. There are two other local extrema
for the error function f − r: a minimum at Q and a maximum at R.
Since both these points are to the right of η2, where v(x) > 0, we shall
have f − r∗ > f − r at both of Q and R, and |f − r∗| > |f − r| at R.
The magnitude of the extra term εv(x) must therefore be limited by the
need to avoid the new difference f −r∗ becoming too large at R. We can
achieve this by selecting ε > 0 sufficiently small. In this illustration the
polynomial r ∈ P3 is not a minimax approximation to f on the given
interval, since we can construct a better approximation r∗ which is also
in P3.

We can now apply the Oscillation Theorem to prove that the minimax
polynomial is unique.

Theorem 8.5 (Uniqueness Theorem) Suppose that [a, b] is a bounded
closed interval of the real line. Each f ∈ C[a, b] has a unique minimax
polynomial pn ∈ Pn on [a, b].

Proof Suppose that qn ∈ Pn is also a minimax polynomial for f , and
that pn and qn are distinct. Then,

‖f − pn‖∞ = ‖f − qn‖∞ = En(f) ,

where, as in the proof of the Oscillation Theorem, we have used the
notation

En(f) = min
q∈Pn

‖f − q‖∞ .

This implies, by the triangle inequality, that

‖f − 1
2 (pn + qn)‖∞ = ‖ 1

2 (f − pn) + 1
2 (f − qn)‖∞

≤ 1
2‖f − pn‖∞ + 1

2‖f − qn‖∞
= En(f) .

Therefore 1
2 (pn+ qn) ∈ Pn is also a minimax polynomial approximation

to f on [a, b]. By the Oscillation Theorem there exists a sequence of
n + 2 critical points xi, i = 0, 1, . . . , n + 1, at which∣∣f(xi) − 1

2 (pn(xi) + qn(xi))
∣∣ = En(f), i = 0, 1, . . . , n + 1 .
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This is equivalent to

| (f(xi) − pn(xi)) + (f(xi) − qn(xi)) | = 2En(f) .

Now

|f(xi) − pn(xi)| ≤ max
x∈[a,b]

|f(x) − pn(x)| = ‖f − pn‖∞ = En(f) ,

and, for the same reason,

|f(xi) − qn(xi)| ≤ En(f) .

It therefore follows1 that

f(xi) − pn(xi) = f(xi) − qn(xi) , i = 0, 1, . . . , n + 1 .

Thus, the difference pn−qn vanishes at n+2 distinct points. As pn−qn
is a polynomial of degree n or less, it follows that pn − qn is identically
zero. This, however, contradicts our initial hypothesis that pn and qn are
distinct, and implies the uniqueness of the minimax polynomial pn ∈ Pn
for f ∈ C[a, b].

As an application of the Oscillation Theorem, we consider the con-
struction of the minimax approximation p1 ∈ P1 of degree 1 to a function
f ∈ C[a, b] on the interval [a, b], where we assume that f has a continuous
and strictly monotonic increasing derivative f ′ on this interval.

We seek the minimax polynomial p1 ∈ P1 in the form p1(x) = c1x+c0.
The difference f(x)−(c1x+c0) attains its extrema either at the endpoints
of the interval [a, b] or at points where its derivative f ′(x) − c1 is zero.
Since f ′ is strictly monotonic increasing it can only take the value c1 at
one point at most. Therefore the endpoints of the interval, a and b, are
critical points. Let us denote by d the third critical point whose location
inside (a, b) remains to be determined. Since the critical point x = d is
an internal extremum of f(x) − (c1x + c0), it follows that

(f(x) − (c1x + c0))′|x=d = 0 .

By the Oscillation Theorem, with x0 = a, x1 = d, x2 = b, we have the
1 We use the following elementary result: if P and Q are two real numbers and E
is a nonnegative real number such that |P + Q| = 2E, |P | ≤ E and |Q| ≤ E,
then P = Q. This follows by noting that (P − Q)2 = 2P 2 + 2Q2 − (P + Q)2 ≤
2E2+2E2 −4E2 = 0, and hence P −Q = 0. In the proof of the theorem we apply
this with P = f(xi)− pn(xi), Q = f(xi)− qn(xi) and E = En(f).
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Fig. 8.3. Construction of minimax polynomial of degree 1.

equations

f(a) − (c1a + c0) = A ,

f(d) − (c1d + c0) = −A ,

f(b) − (c1b + c0) = A ,


 (8.7)

where either A = L or A = −L, with L = maxx∈[a,b] |f(x) − p1(x)|.
Along with the condition

f ′(d) = c1 (8.8)

this gives four equations to determine the unknowns d, c1, c0 and A.
Subtracting the first equation in (8.7) from the third equation, we get

f(b) − f(a) = c1(b − a), whereby c1 = (f(b) − f(a)) /(b − a). Now, by
the Mean Value Theorem, Theorem A.3, with this choice of c1 equation
(8.8) has at least one solution, d, in the open interval in (a, b). In fact,
the value of d is uniquely determined by (8.8), as f ′ is continuous and
strictly monotonic increasing. Next, c0 can be determined by adding
the second equation in (8.7) to the first. Having calculated both c1 and
c0 we insert them into the first equation in (8.7) to obtain A; finally
L = |A|.

The construction of the minimax polynomial p1 is illustrated in Figure
8.3; R is the point at which the tangent to the curve y = f(x) is parallel
to the chord PQ; the graph of p1(x) is parallel to these two lines, and
lies half-way between them.



8.4 Chebyshev polynomials 241

Table 8.1. The first seven Chebyshev Polynomials: T0, T1, . . . , T6.

T0(x) = 1
T1(x) = x
T2(x) = 2x2 − 1
T3(x) = 4x3 − 3x
T4(x) = 8x4 − 8x2 + 1
T5(x) = 16x5 − 20x3 + 5x
T6(x) = 32x6 − 48x4 + 18x2 − 1

8.4 Chebyshev polynomials

There are very few functions for which it is possible to write down in
simple closed form the minimax polynomial. One such problem of prac-
tical importance concerns the approximation of a power of x by a poly-
nomial of lower degree. The minimax approximation in this case is given
in terms of Chebyshev polynomials.1

Definition 8.2 The Chebyshev polynomial Tn of degree n is defined,
for x ∈ [−1, 1], by

Tn(x) = cos(n cos−1 x) , n = 0, 1, 2, . . . .

Despite its unusual form, Tn is a polynomial in disguise. For example,
T0(x) ≡ 1, T1(x) = x for all x ∈ [−1, 1], and so on. In order to show
that this is true in general, we recall the trigonometric identity

cos (n + 1)ϑ + cos (n − 1)ϑ = 2 cosϑ cosnϑ ,

and set ϑ = cos−1 x, with x ∈ [−1, 1], to obtain the recurrence relation

Tn+1(x) = 2xTn(x) − Tn−1(x) , n = 1, 2, 3, . . . , x ∈ [−1, 1] .

Since T0 and T1 have already been shown to be polynomials on [−1, 1],
we deduce from this recurrence relation, by induction, that Tn is a poly-
nomial of degree n on [−1, 1] for each n ≥ 0. A list of the first seven
Chebyshev polynomials is given in Table 8.1.
1 Pafnuty Lvovich Chebyshev (16 May 1821, Okatovo, Russia – 8 December 1894,
St Petersburg, Russia). In 1850 Chebyshev proved the Bertrand conjecture, that
there is always at least one prime between n and 2n for n ≥ 2. He also came close
to proving the Prime Number Theorem which states that the number of primes
less than n is, asymptotically as n → ∞, n/ lnn. The proof was completed,
independently, by Dirichlet and de la Vallée Poussin two years after Chebyshev’s
death. Chebyshev made important contributions to probability theory, orthogonal
functions and the theory of integrals.
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Fig. 8.4. The first three Chebyshev polynomials of (a) even degree, T0, T2,
T4, and (b) odd degree T1, T3, T5, plotted on the interval [−1, 1].

The polynomials T0, T2, T4, and T1, T3, T5, are depicted in Figure 8.4.
We see that the even-degree Chebyshev polynomials are even functions;
(i.e., T2k(−x) = T2k(x) for all x ∈ [−1, 1]) and the odd-degree ones are
odd functions (i.e., T2k+1(−x) = −T2k+1(x) for all x ∈ [−1, 1]). They
all map the interval [−1, 1] into itself.1

The proof of the next lemma is straightforward and is left as an exer-
cise (see Exercise 10).

Lemma 8.2 The Chebyshev polynomials have the following properties:

(i) Tn+1(x) = 2xTn(x) − Tn−1(x), x ∈ [−1, 1], n = 1, 2, 3, . . .;
(ii) for n ≥ 1, Tn is a polynomial in x of degree n on the interval

[−1, 1], with leading coefficient 2n−1xn;
(iii) Tn is an even function on [−1, 1] if n is even, and an odd function

on [−1, 1] if n is odd, n ≥ 0;
(iv) for n ≥ 1, the zeros of Tn are at

xj = cos
(2j − 1)π

2n
, j = 1, . . . , n ;

1 In Maple, typing plot(orthopoly[T](7,x), x=-1..1, y=-1..1); will, for
example, plot the graph of the Chebyshev polynomial T7 of degree 7 in x; T8, T9,
etc., can be obtained similarly. Incidentally, you may be wondering why Tn and
not Cn is used to denote the Chebyshev polynomial of degree n. The reasons are
largely historical: in some older books and articles Chebyshev’s Russian surname
has been transliterated from the Cyrillic original as Tchebyshev, following the
French and German transliterations Tchebychef and Tschebyscheff, respectively.
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they are all real and distinct, and lie in (−1, 1);
(v) |Tn(x)| ≤ 1 for all x ∈ [−1, 1] and all n ≥ 0;
(vi) for n ≥ 1, Tn(x) = ±1, alternately at the n + 1 points xk =

cos(kπ/n), k = 0, 1, . . . , n.

We can now apply the Oscillation Theorem to construct the minimax
polynomial of degree n for f : x �→ xn+1 on the interval [−1, 1].

Theorem 8.6 Suppose that n ≥ 0. The polynomial pn ∈ Pn defined by

pn(x) = xn+1 − 2−nTn+1(x) , x ∈ [−1, 1] ,

is the minimax approximation of degree n to the function x �→ xn+1 on
the interval [−1, 1].

Proof By part (ii) of Lemma 8.2, pn ∈ Pn. Since

xn+1 − pn(x) = 2−nTn+1(x) ,

by parts (v) and (vi) of Lemma 8.2, the difference xn+1 −pn(x) does not
exceed 2−n in the interval [−1, 1], and attains this value with alternat-
ing signs at the n + 2 points xk = cos(kπ/(n + 1)), k = 0, 1, . . . , n + 1.
Therefore, by the Oscillation Theorem, pn is the (unique) minimax poly-
nomial approximation from Pn to the function x �→ xn+1 over [−1, 1].

A polynomial of degree n whose leading coefficient, the coefficient
of xn, is equal to 1, is called a monic polynomial of degree n. For
example, the polynomial r ∈ Pn+1 defined by r(x) = xn+1 − q(x) with
q ∈ Pn, is a monic polynomial of degree n + 1.

Corollary 8.1 Suppose that n ≥ 0. Among all monic polynomials of
degree n + 1 the polynomials 2−nTn+1 and −2−nTn+1 have the smallest
∞-norm on the interval [−1, 1].

Proof Let P1
n+1 denote the set of all monic polynomials of degree n+1.

Any r ∈ P1
n+1 can be regarded as the difference between the function

x �→ xn+1 and a polynomial of lower degree, i.e., r(x) = xn+1 − q(x)
with q ∈ Pn. Hence, by Theorem 8.6,

min
r∈P1

n+1

‖r‖∞ = min
q∈Pn

‖xn+1 − q‖∞

= ‖xn+1 − (xn+1 − 2−nTn+1)‖∞
= ‖2−nTn+1‖∞ ;
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the minimum is, therefore, achieved when r ∈ P1
n+1 is one of the monic

polynomials 2−nTn+1 or −2−nTn+1.

8.5 Interpolation

We close the body of this chapter with another application of Chebyshev
polynomials: it concerns the ‘optimal’ choice of interpolation points in
Lagrange interpolation. In Chapter 6 the error between an n + 1 times
continuously differentiable function f , defined on a closed interval [a, b]
of the real line, and its Lagrange interpolation polynomial pn of degree
n, n ≥ 0, with interpolation points ξ0, . . . , ξn, was shown to have the
form

f(x) − pn(x) =
f (n+1)(η)
(n + 1)!

πn+1(x) , (8.9)

where η = η(x) ∈ (a, b) and

πn+1(x) = (x − ξ0) . . . (x − ξn) . (8.10)

Clearly, πn+1 is a monic polynomial of degree n + 1.
In a practical application the values ξi and f(ξi), i = 0, 1, . . . , n, may

be already given. However, in a situation where [a, b] = [−1, 1] and the
ξi, i = 0, 1, . . . , n, can be freely chosen in the interval [−1, 1], Corollary
8.1 suggests that they should be taken as the zeros of the Chebyshev
polynomial Tn+1, for then πn+1 will have the smallest ∞-norm on the in-
terval [−1, 1] among all monic polynomials. This observation motivates
the following result.

Theorem 8.7 Suppose that f is a real-valued function, defined and
continuous on the closed real interval [a, b], and such that the derivative
of f of order n + 1 is continuous on [a, b]. Let pn ∈ Pn denote the
Lagrange interpolation polynomial of f , with interpolation points

ξj = 1
2 (b − a) cos

(j + 1
2 )π

n + 1
+ 1

2 (b + a) , j = 0, 1, . . . , n ;

then

‖f − pn‖∞ ≤ (b − a)n+1

22n+1(n + 1)!
Mn+1

where Mn+1 = maxζ∈[a,b] |f (n+1)(ζ)|.
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Proof Let τj = cos
(
(j + 1

2 )π/(n + 1)
)
, j = 0, 1, . . . , n, denote the zeros

of the polynomial Tn+1(t) (in the interval (−1, 1)). Hence,
n∏
j=0

(t − τj) = 2−nTn+1(t) , t ∈ [−1, 1] .

Let us define the points ξj , j = 0, 1, . . . , n, as in the statement of the
theorem. Clearly ξj ∈ (a, b) is the image of τj ∈ (−1, 1) under the linear
transformation t �→ x = 1

2 (b − a)t + 1
2 (b + a); we note in passing that

the inverse of this mapping is x �→ t(x) = (2x − a − b)/(b − a); thus,
n∏
j=0

(x − ξj) =
(
b − a

2

)n+1 n∏
j=0

(t(x) − τj) =
(
b − a

2

)n+1

2−nTn+1(t(x)) .

The required bound now follows from (8.9), since |Tn+1(t(x))| ≤ 1 for
all x ∈ [a, b], and therefore |πn+1(x)| ≤ (b − a)n+12−2n−1.

The De la Vallée Poussin Theorem, Theorem 8.3, suggests the no-
tion of a near-minimax polynomial, which is a polynomial pn ∈ Pn
such that the difference f(x) − pn(x) changes sign at n + 1 points
ξj , j = 0, 1, . . . , n, with a < ξ0 < · · · < ξn < b; for the difference
f(x) − pn(x) then attains a local maximum or minimum with alternat-
ing signs in each of the intervals [a, ξ0), (ξ0, ξ1), . . . , (ξn, b]. The posi-
tions of these alternating local maxima and minima are then the points
xi, i = 0, 1, . . . , n + 1, required by Theorem 8.3, and we therefore know
that the ∞-norm of the error of the minimax polynomial lies between
the least and greatest of the absolute values of these local maxima and
minima. In particular, we should expect that if the sizes of these local
maxima and minima are not greatly different, then the error of the near-
minimax approximation should not be very much larger than the error
of the minimax approximation.

Given any set of points ξi, i = 0, 1, . . . , n, with a < ξ0 < · · · < ξn < b,
the polynomial πn+1(x) = (x− ξ0) . . . (x− ξn) changes sign at the n+ 1
points ξj , j = 0, 1, . . . , n. Let us assume that f ∈ C[a, b], f (n+1) exists
and is continuous on [a, b], and f (n+1) has the same sign on the whole
of (a, b). It then follows that the product f (n+1)(η)πn+1(x) has exactly
n + 1 sign-changes in the open interval (a, b) for any η ∈ (a, b). Thus,
according to (8.9), the Lagrange interpolation polynomial pn of degree n

for the function f , with interpolation points ξj , j = 0, 1, . . . , n, contained
in the open interval (a, b), is a near-minimax polynomial from Pn for f

on [a, b].
We have therefore just shown that if f (n+1) exists and is continuous

on the closed interval [a, b], and has the same sign on the open interval
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(a, b), then the polynomial constructed by interpolating at the points
ξj , j = 0, 1, . . . , n, obtained by linearly mapping the n + 1 zeros of the
Chebyshev polynomial Tn+1(t) from (−1, 1) to (a, b), is a near-minimax
approximation from Pn for the function f ∈ C[a, b] on the interval [a, b].
Notice that if we use equally spaced interpolation points, so that ξj =
a+j(b−a)/n, j = 0, 1, . . . , n, n ≥ 1, we shall not obtain a near-minimax
approximation, since the interpolation error now changes sign at only
n − 1 points, the interpolation points which are internal to (a, b).

✲x

y✻

Fig. 8.5. Comparison of two polynomial approximations to e2x on [0,1]: the
thick curve is the error of the minimax approximation; the thin curve is the
error of the polynomial obtained by interpolation at the Chebyshev points.

As an illustration, Figure 8.5 shows the errors of two approximations
of degree 4 to the function f(x) = e2x over the interval [0, 1]. One
of these is the minimax approximation, and the other is obtained by
interpolation at the zeros of T5(t). It is clear that they are quite close;
in fact the ∞-norms of the errors are 0.0015 and 0.0017 respectively.

In the next chapter we shall show that the least squares polynomial
approximation to a continuous real-valued function is also near-minimax
in this sense.

An alternative and very easy way of constructing polynomial approx-
imations to many simple, smooth, functions is to truncate their Taylor
series expansion. For example,

ekx = 1 + kx + · · · + knxn

n!
+ · · · ,
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so we obtain a polynomial approximation pn(x) by taking the terms of
this series up to the one involving xn. Then, clearly,

ekx − pn(x) =
∞∑

r=n+1

krxr

r!
.

Over the interval [0, 1], for example, this difference is nonnegative and
monotonic increasing; it does not change sign at all. Hence the polyno-
mial pn ∈ Pn thus constructed is quite certainly not a near-minimax ap-
proximation for x �→ ekx on [0, 1]. Nevertheless, maxx∈[0,1] |ekx − pn(x)|
can be made arbitrarily small by choosing n sufficiently large.

8.6 Notes

For further details on the topics presented in this chapter, we refer to

➧ M.J.D. Powell, Approximation Theory and Methods, Cambridge
University Press, Cambridge, 1996.

The Weierstrass Theorem is discussed in Chapter 6 of that book, and
is stated in its Theorem 6.3. Although the proof presented by Powell
uses the Bernstein polynomials, it is different from the more elementary
but slightly lengthier argument proposed in Exercise 12 here: it relies
on a proof of Bohman and Korovkin based on properties of monotone
operators; see, also, p. 66 in Chapter 3 of

➧ E.W. Cheney, Introduction to Approximation Theory, McGraw–Hill,
New York, 1966.

The notes contained on pp. 224–233 of Cheney’s book are particularly
illuminating.

The proof of the Weierstrass Theorem as proposed in Exercise 12,
including the definition of what we today call Bernstein polynomials,
stem from a paper of Sergei Natanovich Bernstein (1880–1968), entitled
‘Démonstration du théorème de Weierstrass fondée sur le calcul des prob-
abilités’, Comm. Soc. Math. Kharkow 13, 1–2, 1912/13.

Weierstrass’ main contributions to approximation theory, as well
as those of other mathematicians (including Picard, Volterra, Runge,
Lebesgue, Mittag-Leffler, Fejér, Landau, de la Vallée Poussin, Bern-
stein), are reviewed in the extensive historical survey by Allan Pinkus,
Weierstrass and approximation theory, J. Approx. Theory 107, 1–66,
2000. Further details about the history of the subject can be found at
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the history of approximation theory website maintained by Allan Pinkus
and Carl de Boor: http://www.cs.wisc.edu/˜deboor/HAT/

The second part of Theorem 8.1 concerning the approximability of
a continuous function by polynomials in the 2-norm is not usually pre-
sented as part of the classical Weierstrass Theorem which is posed in the
∞-norm. Here, we have chosen to state these results together in order
to highlight the analogy, as well as to motivate the use of the 2-norm in
polynomial approximation in the next chapter, Chapter 9.

In both Cheney’s and Powell’s books minimax approximation is treated
in the more general framework of Haar systems. An (n+1)-dimensional
linear subspace A of C[a, b] is said to satisfy the Haar condition if, for
every nonzero p in A, the number of roots of the equation p(x) = 0
in the interval [a, b] is less than n + 1. The concept of Haar system is
due to Alfred Haar (1885–1933), Die Minkowskische Geometrie und die
Annäherung an stetige Funktionen, Math. Ann. 78, 294–311, 1918; this
paper contains Haar’s Theorem which characterises finite-dimensional
Haar systems in spaces of continuous functions. The Characterisation
Theorem, formulated as Theorem 7.2 in Powell’s book, shows that the
Oscillation Theorem, Theorem 8.4 of the present chapter, remains valid
in a more general setting when the set of polynomials {1, x, . . . , xn} is
replaced by an (n + 1)-dimensional Haar system of functions contained
in C[a, b].

Exercises

8.1 Give a proof of Lemma 8.1.
8.2 Suppose that the real-valued function f is continuous and even

on the interval [−a, a], that is, f(x) = f(−x) for all x ∈ [−a, a].
By using the Uniqueness Theorem, or otherwise, show that the
minimax polynomial approximation of degree n is an even func-
tion. Deduce that the minimax polynomial approximation of
degree 2n is also the minimax polynomial approximation of de-
gree 2n+1. What does this imply about the sequence of critical
points for the minimax polynomial p2n?

8.3 State and prove similar results to those in Exercise 2, for the
case where f is an odd function, that is, f(x) = −f(−x) for all
x ∈ [−a, a].

8.4 (i) Construct the minimax polynomial p2 ∈ P2 on the interval
[−1, 1] for the function g defined by g(x) = sinx.
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(ii) Construct the minimax polynomial p3 ∈ P3 on the interval
[−1, 1] for the function h defined by h(x) = cosx2.
(Use the results of Exercises 2 and 3.)

8.5 The function H is defined by H(x) = 1 if x > 0, H(x) = −1
if x < 0, and H(0) = 0. Show that for any n ≥ 0 and any
pn ∈ Pn, ‖H − pn‖∞ ≥ 1 on the interval [−1, 1]. Construct
the polynomial, of degree 0, of best approximation to H on the
interval [−1, 1], and show that it is unique. (Note that since H

is discontinuous most of the theorems in this chapter are not
applicable.)

Show that the polynomial of best approximation, of degree
1, to H on [−1, 1] is not unique, and give an expression for its
most general form.

8.6 Suppose that t1 < t2 < · · · < tk are k distinct points in the
interval [a, b]; for any function f defined on [a, b], write Zk(f) =
maxki=1 |f(xi)|. Explain why Zk( · ) is not a norm on the space of
functions which are continuous on [a, b]; show that it is a norm
on the space of polynomials of degree n, provided that k > n.

In the case k = 3, with t1 = 0, t2 = 1
2 , t3 = 1, where we

wish to approximate the function f : x �→ ex on the interval
[0, 1], explain graphically, or otherwise, why the polynomial p1

of degree 1 which minimises Z3(f − p1) satisfies the conditions

f(0) − p1(0) = −[f( 1
2 ) − p1]( 1

2 ) = f(1) − p1(1) .

Hence construct this polynomial p1. Now suppose that k = 4,
with t1 = 0, t2 = 1

3 , t3 = 2
3 , t4 = 1

3 ; use a similar method to
construct the polynomial of degree 1 which minimises Z4(f−p1).

8.7 Among all polynomials pn ∈ Pn of the form

pn(x) = Axn +
n−1∑
k=0

akx
k,

where A is a fixed nonzero real number, find the polynomial
of best approximation for the function f(x) ≡ 0 on the closed
interval [−1, 1].

8.8 Find the minimax polynomial pn ∈ Pn on the interval [−1, 1]
for the function f defined by

f(x) =
n+1∑
k=0

akx
k,
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where an+1 �= 0.
8.9 Construct the minimax polynomial p1 ∈ P1 on the interval

[−1, 2] for the function f defined by f(x) = |x|.
8.10 Give a proof of Lemma 8.2.
8.11 Give an example of a continuous real-valued function f defined

on the closed interval [a, b] such that the set of critical points for
the minimax approximation of f by polynomials from P1 does
not contain either of the points a and b.

8.12 For each nonnegative integer n, and x ∈ [0, 1], define the Bern-
stein polynomials pnk ∈ Pn by

pnk(x) =
n!

k!(n − k)!
xk(1 − x)n−k , k = 0, . . . , n .

Show that

(1 − x + tx)n =
n∑
k=0

pnk(x)tk ;

by differentiating this relation successively with respect to t and
putting t = 1, show that, for any x ∈ [0, 1],

n∑
k=0

pnk(x) = 1 ,

n∑
k=0

kpnk(x) = nx ,

n∑
k=0

k(k − 1)pnk(x) = n(n − 1)x2 ,

and deduce that
n∑
k=0

(x − k/n)2pnk(x) =
x(1 − x)

n
, x ∈ [0, 1] .

Define M to be the upper bound of |f(x)| on [0, 1]. Given
ε > 0, we can choose δ > 0 such that |f(x) − f(y)| < ε/2 for
any x and y in [0, 1] such that |x − y| < δ. Now define the
polynomial pn ∈ Pn by

pn(x) =
n∑
k=0

f(k/n)pnk(x) ,
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and choose a fixed value of x in [0, 1]; show that

|f(x) − pn(x)| ≤
n∑
k=0

|f(x) − f(k/n)|pnk(x) .

Using the notation
n∑
k=0

=
∑

1

+
∑

2

where
∑

1 denotes the sum over those values of k for which
|x − k/n| < δ, and

∑
2 denotes the sum over those values of k

for which |x − k/n| ≥ δ, show that∑
1

|f(x) − f(k/n)|pnk(x) < ε/2 .

Show also that∑
2

|f(x) − f(k/n)|pnk(x) ≤ (2M/δ2)
n∑
k=0

(x − k/n)2pnk(x) .

Now, choose N0 = M/(δ2ε), and show that

|f(x) − pn(x)| < ε ∀x ∈ [0, 1] ,

if n ≥ N0. Deduce that

‖f − pn‖∞ < ε, if n ≥ N0 ,

where ‖ · ‖∞ denotes the ∞-norm on the interval [0, 1].



9

Approximation in the 2-norm

9.1 Introduction

In Chapter 8 we discussed the idea of best approximation of a continuous
real-valued function by polynomials of some fixed degree in the ∞-norm.
Here we consider the analogous problem of best approximation in the
2-norm. Why, you might ask, is it necessary to consider best approxima-
tion in the 2-norm when we have already developed a perfectly adequate
theory of best approximation in the ∞-norm? As our first example in
Section 9.3 will demonstrate, the choice of norm can significantly influ-
ence the outcome of the problem of best approximation: the polynomial
of best approximation of a certain fixed degree to a given continuous
function in one norm need not bear any resemblance to the polynomial
of best approximation of the same degree in another norm. Ultimately,
in a practical situation, the choice of norm will be governed by the sense
in which the given continuous function has to be well approximated.

As will become apparent, best approximation in the 2-norm is closely
related to the notion of orthogonality and this in turn relies on the
concept of inner product. Thus, we begin the chapter by recalling from
linear algebra the definition of inner product space.

Throughout the chapter [a, b] will denote a nonempty, bounded, closed
interval of the real line, and (a, b) will signify a nonempty bounded open
interval of the real line.

252
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9.2 Inner product spaces

Definition 9.1 Let V be a linear space over the field of real numbers.
A real-valued function 〈 · , · 〉, defined on the Cartesian product V ×V, is
called an inner product on V if it satisfies the following axioms:

� 〈f + g, h〉 = 〈f, h〉 + 〈g, h〉 for all f , g and h in V ;
� 〈λf, g〉 = λ〈f, g〉 for all λ in R, and all f , g in V ;
� 〈f, g〉 = 〈g, f〉 for all f and g in V ;
� 〈f, f〉 > 0 if f �= 0, f ∈ V .

A linear space with an inner product is called an inner product space.

Example 9.1 The n-dimensional Euclidean space R
n is an inner prod-

uct space with

〈x,y〉 =
n∑
i=1

xiyi , x, y ∈ R
n ,

where x = (x1, . . . , xn)T and y = (y1, . . . , yn)T. We can also write this
in a more compact form as 〈x,y〉 = xTy.

Definition 9.2 Suppose that V is an inner product space, and f and g

are two elements of V such that 〈f, g〉 = 0; we shall then say that f is
orthogonal to g.

Due to the third axiom of inner product, if f is orthogonal to g, then
g is orthogonal to f ; therefore, if 〈f, g〉 = 0, we shall simply say that f

and g are orthogonal. Our next example shows that Definition 9.2 is a
direct generalisation of the usual geometrical notion of orthogonality.

Example 9.2 According to Example 9.1, with n = 2, the formula
〈y,z〉 = yTz, where y = (y1, y2)T and z = (z1, z2)T are two-component
vectors, defines an inner product in R

2.
The vectors y and z have respective lengths

√
y2

1 + y2
2 = ‖y‖2 and√

z2
1 + z2

2 = ‖z‖2, where ‖ · ‖2 denotes the 2-norm for vectors in R
2.

Let α ∈ [0, 2π) denote the angle, measured in an anticlockwise direction,
between the positive x1-coordinate direction and y; similarly, let β ∈
[0, 2π) be the angle between the positive x1-coordinate direction and z.
Then,

y = ‖y‖2(cosα, sinα) and z = ‖z‖2(cosβ, sinβ) .



254 9 Approximation in the 2-norm

Now,

〈y, z〉 = yTz

= ‖y‖2‖z‖2 (cosα cosβ + sinα sinβ)

= ‖y‖2‖z‖2 cos(α − β)

= ‖y‖2‖z‖2 cos(ϑyz) ,

where ϑyz = |α−β| is the angle between the vectors y and z. The vector
y is orthogonal to z if, and only if, ϑyz is π/2 or 3π/2; either way,
cos(ϑyz) = 0, and hence 〈y,z〉 = 0. We note in passing that if y = z,
then ϑyz = 0 and therefore

〈y,y〉 = ‖y‖2
2 .

This last observation motivates our next definition.

Definition 9.3 Suppose that V is an inner product space over the field
of real numbers, with inner product 〈 · , · 〉. For f in V, we define the
induced norm

‖f‖ = 〈f, f〉1/2 . (9.1)

Although our terminology and our notation appear to imply that (9.1)
defines a norm on V, this is by no means obvious. In order to show that
f �→ 〈f, f〉1/2 is indeed a norm, we begin with the following result which
is a direct generalisation of the Cauchy–Schwarz inequality (2.35) from
Chapter 2.

Lemma 9.1 (Cauchy–Schwarz inequality)

|〈f, g〉| ≤ ‖f‖ ‖g‖ ∀ f, g ∈ V . (9.2)

Proof The proof is analogous to that of (2.35). Recalling the definition
of ‖ · ‖ from (9.1) and noting the first three axioms of inner product, we
find that, for f, g ∈ V,

0 ≤ ‖λf + g‖2 = λ2‖f‖2 + 2λ〈f, g〉 + ‖g‖2 ∀λ ∈ R . (9.3)

Denoting, for f, g ∈ V fixed, the quadratic polynomial in λ on the right-
hand side by A(λ), the condition for A(λ) to be nonnegative for all λ in
R is that [2〈f, g〉]2 − 4‖f‖2‖g‖2 ≤ 0; this gives the inequality (9.2).

Now, putting λ = 1 in (9.3) and using (9.2) on the right yields

‖f + g‖ ≤ ‖f‖ + ‖g‖ ∀ f , g ∈ V .
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Consequently, ‖ · ‖ obeys the triangle inequality, the third axiom of
norm. The first two axioms of norm, namely that

• ‖f‖ ≥ 0 for all f ∈ V, and ‖f‖ = 0 if, and only if, f = 0 in V, and
• ‖λf‖ = |λ| ‖f‖ for all λ ∈ R and all f ∈ V ,

follow directly form (9.1) and from the last three axioms of inner product
stated in Definition 9.1.

We have thus shown the following result.

Theorem 9.1 An inner product space V over the field R of real numbers,
equipped with the induced norm ‖ · ‖, is a normed linear space over R.

We conclude this section with a relevant example of an inner product
space, whose induced norm is the 2-norm considered at the beginning of
Chapter 8.

Example 9.3 The set C[a, b] of continuous real-valued functions defined
on the closed interval [a, b] is an inner product space with

〈f, g〉 =
∫ b

a

w(x)f(x) g(x)dx , (9.4)

where w is a weight function, defined, positive, continuous and inte-
grable on the open interval (a, b). The norm ‖ · ‖2, induced by this
inner product and given by

‖f‖2 =

(∫ b

a

w(x)|f(x)|2dx
)1/2

, (9.5)

is referred to as the 2-norm on C[a, b] (see Example 8.2). For the sake
of simplicity, we have chosen not to distinguish in terms of our notation
between the 2-norm on C[a, b] defined above and the 2-norm for vectors
introduced in Chapter 2; it will always be clear from the context which
of the two is intended.

Clearly, it is not necessary to demand the continuity of the function
f on the closed interval [a, b] to ensure that ‖f‖2 is finite. For example,
f : x �→ sgn

(
x − 1

2 (a + b)
)
, x ∈ [a, b], has finite 2-norm, despite the fact

that it has a jump discontinuity at x = 1
2 (a + b).

Motivated by this observation, and the desire to develop a theory
of approximation in the 2-norm whose range of applicability extends
beyond the linear space of continuous functions on a bounded closed
interval, we denote by L2

w(a, b) the set of all real-valued functions f
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defined on (a, b) such that w(x)|f(x)|2 is integrable1 on (a, b); the set
L2
w(a, b) is equipped with the inner product (9.4) and the induced 2-norm

(9.5). Obviously, C[a, b] is a proper subset of L2
w(a, b).

In this broader context, ‖ · ‖2 is frequently referred to as the L2-
norm; for the sake of simplicity we shall continue to call it the 2-norm.
As before, w is assumed to be a real-valued function, defined, positive,
continuous and integrable on the open interval (a, b). When w(x) ≡ 1
on (a, b), we shall write L2(a, b) instead of L2

w(a, b).
We are now ready to consider best approximation in the 2-norm.

9.3 Best approximation in the 2-norm

The problem of best approximation in the 2-norm can be formulated as
follows:

(B) Given that f ∈ L2
w(a, b), find pn ∈ Pn such that

‖f − pn‖2 = inf
q∈Pn

‖f − q‖2 ;

such pn is called a polynomial of best approximation of degree n

to the function f in the 2-norm on (a, b).

The existence and uniqueness of pn will be shown in Theorem 9.2.
However, we shall first consider some simple examples.

Example 9.4 Suppose that ε > 0 and let f(x) = 1 − e−x/ε with x

in [0, 1]. For ε = 10−2, the function f is depicted in Figure 9.1. We
shall construct the polynomial of best approximation of degree 0 in the
2-norm, with weight function w(x) ≡ 1, for f on (0, 1), and compare it
with the minimax polynomial of degree 0 for f on [0, 1].

The best approximation to f by a polynomial of degree 0 in the 2-norm
on the interval (0, 1), with weight function w(x) ≡ 1, is determined by
minimising ‖f − c‖2 over all c ∈ R; equivalently, we need to minimise∫ 1

0

(f(x) − c)2dx =
∫ 1

0

|f(x)|2dx − 2c
∫ 1

0

f(x)dx + c2

1 Strictly speaking, the integral in the definition of ‖ · ‖2 should now be thought of as
a Lebesgue integral, with the convention that any two functions in L2

w(a, b) which
differ only on a set of zero measure are identified. Readers who are unfamiliar with
the concept of Lebesgue integral can safely ignore this footnote. For the definition
of set of measure zero see Section 11.1 in Chapter 11.
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Fig. 9.1. Graph of the function f : x �→ 1 − e−x/ε for x ∈ [0, 1] and ε = 10−2.

over all c ∈ R. The right-hand side is a quadratic polynomial in c; its
minimum, as a function of c, is achieved for

c =
∫ 1

0

f(x) dx = 1 − ε + εe−1/ε .

Consequently, the polynomial of degree 0 of best approximation to f

in the 2-norm on the interval (0, 1) with respect to the weight function
w(x) ≡ 1 is

p
(2-norm)
0 (x) ≡ 1 − ε + εe−1/ε , x ∈ [0, 1] .

On the other hand, since f ∈ C[0, 1] and f is strictly monotonic increas-
ing on [0, 1], its minimax approximation of degree 0 on the interval [0, 1]
is simply the arithmetic mean of f(0) and f(1):

p
(∞-norm)
0 (x) ≡ 1

2 (1 − e−1/ε) , x ∈ [0, 1] .

Clearly, for 0 < ε � 1, p(∞-norm)
0 (x) ≈ 1/2, while p

(2-norm)
0 (x) ≈ 1.

An even more dramatic discrepancy is observed between the polyno-
mials of best approximation in the 2-norm and the ∞-norm when

f(x) = 1 − ε−1/2e−x/ε , x ∈ [0, 1] .

Here, for 0 < ε � 1, p(2-norm)
0 (x) ≈ 1, as before. On the other hand,

p
(∞-norm)
0 (x) ≡ 1 − 1

2ε
−1/2(1 + e−1/ε) , x ∈ [0, 1] ,



258 9 Approximation in the 2-norm

which tends to −∞ as ε → 0+. These examples indicate that the
polynomial of best approximation from Pn to a function in the 2-norm
can be vastly different from the minimax approximation from Pn to the
same function. �

Given f ∈ L2
w(a, b), we shall assume for the moment the existence of

an associated polynomial of best approximation in the 2-norm; later on
we shall prove that such a polynomial exists and is unique. In order to
motivate the general discussion that will follow, it is helpful to begin
with a straightforward approach to a simple example.

Let us suppose that we wish to construct the polynomial of best ap-
proximation pn ∈ Pn, n ≥ 0, to a function f ∈ L2

w(0, 1) on the interval
(0, 1) in the 2-norm; for simplicity, we shall assume that the weight
function w(x) ≡ 1. Writing the polynomial pn as

pn(x) = c0 + c1x + · · · + cnx
n ,

we want to choose the coefficients cj , j = 0, . . . , n, so as to minimise the
2-norm of the error, en = f − pn,

‖en‖2 = ‖f − pn‖2 =
(∫ 1

0

|f(x) − pn(x)|2dx
)1/2

.

Since the 2-norm is nonnegative and the function ξ ∈ R+ �→ ξ1/2 is
monotonic increasing, this problem is equivalent to one of minimising
the square of the norm; thus, instead, we shall minimise the expression

E(c0, c1, . . . , cn) =
∫ 1

0

[f(x) − pn(x)]2dx

=
∫ 1

0

[f(x)]2dx − 2
n∑
j=0

cj

∫ 1

0

f(x)xjdx

+
n∑
j=0

n∑
k=0

cjck

∫ 1

0

xk+jdx ,

by treating it as a function of (c0, . . . , cn). At the minimum, the partial
derivatives of E with respect to the cj , j = 0, . . . , n, are equal to zero.
This leads to a system of (n + 1) linear equations for the coefficients
c0, . . . , cn:

n∑
k=0

Mjkck = bj , j = 0, . . . , n , (9.6)
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where

Mjk =
∫ 1

0

xk+jdx =
1

k + j + 1
,

bj =
∫ 1

0

f(x)xjdx .

Equivalently, recalling that the inner product associated with the 2-norm
(in the case of w(x) ≡ 1) is defined by

〈g, h〉 =
∫ 1

0

g(x)h(x)dx ,

Mjk and bj can be written as

Mjk = 〈xk, xj〉 , bj = 〈f, xj〉 . (9.7)

By solving the system of linear equations (9.6) for c0, . . . , cn, we obtain
the coefficients of the polynomial of best approximation of degree n to
the function f in the 2-norm on the interval (0, 1). We can proceed in
the same manner on any interval (a, b) with any positive, continuous
and integrable weight function w defined on (a, b).

This approach is straightforward for small values of n, but soon be-
comes impractical as n increases. The source of the computational dif-
ficulties is the fact that the matrix M is the Hilbert matrix, discussed
in Section 2.8. The Hilbert matrix is well known to be ill-conditioned
for large n, so any solution to (9.6), computed with a fixed number of
decimal digits, loses all accuracy due to accumulation of rounding errors.
Fortunately, an alternative method is available, and is discussed in the
next section.

9.4 Orthogonal polynomials

In the previous section we described a method for constructing the poly-
nomial of best approximation pn ∈ Pn to a function f in the 2-norm;
it was based on seeking pn as a linear combination of the polynomi-
als xj , j = 0, . . . , n, which form a basis for the linear space Pn. The
approach was not entirely satisfactory because it gave rise to a system
of linear equations with a full matrix that was difficult to invert. The
central idea of the alternative approach that will be described in this
section is to expand pn in terms of a different basis, chosen so that the
resulting system of linear equations has a diagonal matrix; solving this
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linear system is then a trivial exercise. Of course, the nontrivial ingredi-
ent of this alternative approach is to find a suitable basis for Pn which
achieves the objective that the matrix of the linear system is diagonal.
The expression for Mjk in (9.7) gives us a clue how to proceed.

Suppose that ϕj , j = 0, . . . , n, form a basis for Pn, n ≥ 0; let us seek
the polynomial of best approximation as

pn(x) = γ0ϕ0(x) + · · · + γnϕn(x) ,

where γ0, . . . , γn are real numbers to be determined. By the same process
as in the previous section, we arrive at a system of linear equations of
the form (9.6):

n∑
k=0

Mjkγk = βj , j = 0, . . . , n ,

where now

Mjk = 〈ϕk, ϕj〉 and βj = 〈f, ϕj〉 ,

with the inner product 〈 · , · 〉 defined by

〈g, h〉 =
∫ b

a

w(x)g(x)h(x) dx ,

and the weight function w assumed to be positive, continuous and inte-
grable on the interval (a, b).

Thus, M = (Mjk) will be a diagonal matrix provided that the basis
functions ϕj , j = 0, . . . , n, for the linear space Pn are chosen so that
〈ϕk, ϕj〉 = 0, for j �= k; in other words, ϕk is required to be orthogonal
to ϕj for j �= k, in the sense of Definition 9.2. This observation motivates
the following definition.

Definition 9.4 Given a weight function w, defined, positive, continuous
and integrable on the interval (a, b), we say that the sequence of polyno-
mials ϕj, j = 0, 1, . . ., is a system of orthogonal polynomials on
the interval (a, b) with respect to w, if each ϕj is of exact degree j, and
if ∫ b

a

w(x)ϕk(x)ϕj(x)dx
{

= 0 for all k �= j ,
�= 0 when k = j .

Next, we show that a system of orthogonal polynomials exists on any
interval (a, b) and for any weight function w which satisfies the conditions
in Definition 9.4. We proceed inductively.
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Let ϕ0(x) ≡ 1, and suppose that ϕj has already been constructed for
j = 0, . . . , n, with n ≥ 0. Then,∫ b

a

w(x)ϕk(x)ϕj(x)dx = 0 , k ∈ {0, . . . , n} \ {j} .

Let us now define the polynomial

q(x) = xn+1 − a0ϕ0(x) − · · · − anϕn(x) ,

where

aj =

∫ b
a
w(x)xn+1ϕj(x)dx∫ b
a
w(x)[ϕj(x)]2dx

, j = 0, . . . , n .

It then follows that∫ b

a

w(x)q(x)ϕj(x)dx =
∫ b

a

w(x)xn+1ϕj(x)dx

−aj

∫ b

a

w(x)[ϕj(x)]2dx

= 0 for 0 ≤ j ≤ n ,

where we have used the orthogonality of the sequence ϕj , j = 0, . . . , n.
Thus, with this choice of the numbers aj we have ensured that q is
orthogonal to all the previous members of the sequence, and ϕn+1 can
now be defined as any nonzero-constant multiple of q. This procedure
for constructing a system of orthogonal polynomials is usually referred
to as Gram–Schmidt orthogonalisation.1

Example 9.5 We shall construct a system of orthogonal polynomials
{ϕ0, ϕ1, ϕ2} on the interval (0, 1) with respect to the weight function
w(x) ≡ 1.

We put ϕ0(x) ≡ 1, and we seek ϕ1 in the form

ϕ1(x) = x − c0ϕ0(x)

such that 〈ϕ1, ϕ0〉 = 0; that is,

〈x, ϕ0〉 − c0〈ϕ0, ϕ0〉 = 0 .

1 Jørgen Pedersen Gram (27 June 1850, Nustrup, Denmark – 29 April 1916, Copen-
hagen, Denmark); Erhard Schmidt (13 January 1876, Dorpat, Russia (now Tartu,
Estonia) – 6 December 1959, Berlin, Germany).
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Hence,

c0 =
〈x, ϕ0〉
〈ϕ0, ϕ0〉

= 1
2

and therefore,

ϕ1(x) = x − 1
2ϕ0(x) = x − 1

2 .

By construction, 〈ϕ1, ϕ0〉 = 〈ϕ0, ϕ1〉 = 0.
We now seek ϕ2 in the form

ϕ2(x) = x2 − (d1ϕ1(x) + d0ϕ0(x))

such that 〈ϕ2, ϕ1〉 = 0 and 〈ϕ2, ϕ0〉 = 0. Thus,

〈x2, ϕ1〉 − d1〈ϕ1, ϕ1〉 − d0〈ϕ0, ϕ1〉 = 0 ,

〈x2, ϕ0〉 − d1〈ϕ1, ϕ0〉 − d0〈ϕ0, ϕ0〉 = 0 .

As 〈ϕ0, ϕ1〉 = 0 and 〈ϕ1, ϕ0〉 = 0, we have that

d1 =
〈x2, ϕ1〉
〈ϕ1, ϕ1〉

= 1 ,

d0 =
〈x2, ϕ0〉
〈ϕ0, ϕ0〉

= 1
3 ,

and therefore

ϕ2(x) = x2 − x + 1
6 . (9.8)

Clearly, 〈ϕk, ϕj〉 = 0 for j �= k, j, k ∈ {0, 1, 2}, and ϕj is of exact degree
j, j = 0, 1, 2. Thus we have found the required system {ϕ0, ϕ1, ϕ2} of
orthogonal polynomials on the interval (0, 1) with respect to the given
weight function w.

By continuing this procedure, we can construct a system of orthog-
onal polynomials {ϕ0, ϕ1, . . . , ϕn}, with respect to the weight function
w(x) ≡ 1 on the interval (0, 1), for any n ≥ 1. For example, when n = 3,
we shall find {ϕ0, ϕ1, ϕ2, ϕ3}, with ϕ0, ϕ1, ϕ2, as above, and

ϕ3(x) = x3 − 3
2x

2 + 3
5x − 1

20 .

�
Having generated a system of orthogonal polynomials on the interval

(0, 1) with respect to the weight function w(x) ≡ 1, by performing the
linear mapping x �→ (b − a)x + a we may obtain a system of orthogo-
nal polynomials on any open interval (a, b) with respect to the weight
function w(x) ≡ 1. For example, when (a, b) = (−1, 1), the mapping
x �→ 2x − 1 leads to the system of Legendre polynomials on (−1, 1).
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Fig. 9.2. The first four Legendre polynomials on the interval (−1, 1).

Example 9.6 (Legendre polynomials) We wish to construct a sys-
tem of orthogonal polynomials on (a, b) = (−1, 1) with respect to the
weight function w(x) ≡ 1.

On replacing x by

x − a

b − a
= 1

2 (x + 1) , x ∈ (a, b) = (−1, 1) ,

in ϕ0(x), ϕ1(x), ϕ2(x), ϕ3(x) from Example 9.5, we obtain, on normal-
ising each of these polynomials so that its value at x = 1 is equal to 1,
the polynomials ϕ0, ϕ1, ϕ2, ϕ3, defined by

ϕ0(x) = 1 ,

ϕ1(x) = x ,

ϕ2(x) = 3
2x

2 − 1
2 ,

ϕ3(x) = 5
2x

3 − 3
2x .

These are the first four elements of the system of Legendre polynomials,
orthogonal on the interval (−1, 1) with respect to the weight function
w(x) ≡ 1. They are depicted in Figure 9.2. An alternative normalisation
would have been to divide each ϕj by ‖ϕj‖2 so as to ensure that the
2-norm of the resulting scaled polynomial is equal to 1. �
Example 9.7 The Chebyshev polynomials Tn: x �→ cos(n cos−1 x),
n = 0, 1, . . ., introduced in Section 8.4, form an orthogonal system on
the interval (−1, 1) with respect to the positive, continuous and integrable
weight function w(x) = (1 − x2)−1/2.
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The proof of this is simple: let 〈 · , · 〉 denote the inner product in L2
w(−1, 1)

with w = (1 − x2)−1/2. By using the change of independent variable

t ∈ (0, π) �→ x = cos t ∈ (−1, 1) ,

we have

〈Tm, Tn〉 =
∫ 1

−1

1√
1 − x2

(cosm cos−1 x) (cosn cos−1 x) dx

=
∫ π

0

cosmt cosnt dt

= 1
2

∫ π

0

{cos(m + n)t + cos(m − n)t} dt

=
{

0 when m �= n ,
π
2 when m = n ,

for any pair of nonnegative integers m and n. �
We are now ready to prove the existence and uniqueness of the poly-

nomial of best approximation in the 2-norm. In particular, the next
theorem shows that the infimum of ‖f − q‖2 over q ∈ Pn in problem (B)
is attained and can be replaced by a minimum over q ∈ Pn.

Theorem 9.2 Given that f ∈ L2
w(a, b), there exists a unique polynomial

pn ∈ Pn such that ‖f − pn‖2 = minq∈Pn
‖f − q‖2.

Proof In order to simplify the notation, we recall the definition of the
inner product 〈 · , · 〉:

〈g, h〉 =
∫ b

a

w(x)g(x)h(x)dx ,

and note that the induced 2-norm, ‖ · ‖2, is defined by

‖g‖2 = 〈g, g〉1/2.

Suppose that ϕj , j = 0, . . . , n, is a system of orthogonal polynomials
with respect to the weight function w on (a, b). Let us normalise the
polynomials ϕj by defining a new system of orthogonal polynomials,

ψj(x) =
ϕj(x)
‖ϕj‖2

, j = 0, . . . , n .

Then,

〈ψk, ψj〉 =
{

1 , j = k ,

0 , j �= k .
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Such a system of polynomials is said to be orthonormal. The polyno-
mials ψj , j = 0, . . . , n, are linearly independent and form a basis for the
linear space Pn; therefore, each element q ∈ Pn can be expressed as a
suitable linear combination,

q(x) = β0ψ0(x) + · · · + βnψn(x) .

We wish to choose βj , j = 0, . . . , n, so as to ensure that the correspond-
ing polynomial q minimises ‖f − q‖2

2 over all q ∈ Pn. Let us, therefore,
consider the function E: (β0, . . . , βn) ∈ R

n+1 �→ E(β0, . . . , βn) defined
by E(β0, . . . , βn) = ‖f − q‖2

2, where q(x) = β0ψ0(x) + · · · + βnψn(x).
Then,

E(β0, . . . , βn) = 〈f − q, f − q〉
= 〈f, f〉 − 2〈f, q〉 + 〈q, q〉

= ‖f‖2
2 − 2

n∑
j=0

βj〈f, ψj〉 +
n∑
j=0

n∑
k=0

βjβk〈ψk, ψj〉

= ‖f‖2
2 − 2

n∑
j=0

βj〈f, ψj〉 +
n∑
j=0

β2
j

=
n∑
j=0

[βj − 〈f, ψj〉]2 + ‖f‖2
2 −

n∑
j=0

|〈f, ψj〉|2 .

The function (β0, . . . , βn) �→ E(β0, . . . , βn) achieves its minimum value
at (β∗

0 , . . . , β
∗
n), where

β∗
j = 〈f, ψj〉 , j = 0, . . . , n .

Hence pn ∈ Pn defined by

pn(x) = β∗
0ψ0(x) + · · · + β∗

nψn(x)

is the unique polynomial of best approximation of degree n to the func-
tion f ∈ L2

w(a, b) in the 2-norm on the interval (a, b).

Remark 9.1 As E(β∗
0 , . . . , β

∗
n) = ‖f−pn‖2

2 ≥ 0, it follows from the proof
of Theorem 9.2 that if f ∈ L2

w(a, b), and {ψ0, ψ1, . . .} is an orthonormal
system of polynomials in L2

w(a, b), then
n∑
j=0

|〈f, ψj〉|2 ≤ ‖f‖2
2



266 9 Approximation in the 2-norm

f

pn
0

Pn

f – pn

L2
w(a,b)

Fig. 9.3. Illustration of the orthogonality property 〈f − pn, q〉 = 0 for all q in
Pn, expressing the fact that if pn ∈ Pn is a polynomial of best approximation
to f ∈ L2

w(a, b) in the 2-norm, then the error f − pn is orthogonal, in L2
w(a, b),

to all elements of the linear space Pn. The 0 in the figure denotes the zero
element of the linear space Pn (and, simultaneously, that of L2

w(a, b)), namely
the function that is identically zero on the interval (a, b).

for each n ≥ 0. This result is known as Bessel’s inequality.1

The next theorem, in conjunction with the use of orthogonal poly-
nomials, will be our key tool for constructing the polynomial of best
approximation in the 2-norm.

Theorem 9.3 A polynomial pn ∈ Pn is the polynomial of best approxi-
mation of degree n to a function f ∈ L2

w(a, b) in the 2-norm if, and only
if, the difference f − pn is orthogonal to every element of Pn, i.e.,

〈f − pn, q〉 = 0 ∀ q ∈ Pn . (9.9)

A geometrical illustration of the property (9.9) is given in Figure 9.3.

Proof of theorem Suppose that (9.9) holds. Then,

〈f − pn, pn − q〉 = 0 ∀ q ∈ Pn,

given that pn − q ∈ Pn for each q in Pn. Therefore,

‖f − pn‖2
2 = 〈f − pn, f − pn〉

= 〈f − pn, f − q〉 + 〈f − pn, q − pn〉
= 〈f − pn, f − q〉 ∀ q ∈ Pn .

1 Friedrich Wilhelm Bessel (22 July 1784, Minden, Westphalia, Holy Roman Empire
(now Germany) – 17 March 1846, Königsberg, Prussia (now Kaliningrad, Russia)).
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Hence, by the Cauchy–Schwarz inequality (9.2),

‖f − pn‖2
2 ≤ ‖f − pn‖2 ‖f − q‖2 ∀ q ∈ Pn .

This implies that

‖f − pn‖2 ≤ ‖f − q‖2 ∀ q ∈ Pn .

On choosing q = pn on the right-hand side, equality will hold and there-
fore

‖f − pn‖2 = min
q∈Pn

‖f − q‖2 .

Conversely, suppose that pn is the polynomial of best approximation
to f ∈ L2

w(a, b). We have seen in the proof of Theorem 9.2 that pn can
be written in terms of the orthonormal polynomials ψk, k = 0, . . . , n, as

pn(x) = β∗
0ψ0(x) + · · · + β∗

nψn(x) ,

where

β∗
k = 〈f, ψk〉 , k = 0, . . . , n . (9.10)

On recalling that 〈ψk, ψj〉 = δjk, j, k ∈ {0, . . . , n}, where δjk is the
Kronecker delta, we deduce from (9.10) that

〈f − pn, ψj〉 = 〈f, ψj〉 −
n∑
k=0

β∗
k〈ψk, ψj〉

= 〈f, ψj〉 −
n∑
k=0

β∗
kδjk

= 〈f, ψj〉 − β∗
j = 0 , j = 0, . . . , n . (9.11)

Since Pn = span{ψ0, . . . , ψn}, it follows from (9.11) that 〈f − pn, q〉 = 0
for all q ∈ Pn, as required.

An equivalent, but slightly more explicit, form of writing (9.9) is∫ b

a

w(x)(f(x) − pn(x))q(x) dx = 0 ∀ q ∈ Pn .

Theorem 9.2 provides a simple method for determining the polynomial
of best approximation pn ∈ Pn to a function f ∈ L2

w(a, b) in the 2-norm.
First, proceeding as described in the discussion following Definition 9.4,
we construct the system of orthogonal polynomials ϕj , j = 0, . . . , n, on
the interval (a, b) with respect to the weight function w, if this system
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is not already known. We normalise the polynomials ϕj , j = 0, . . . , n,
by setting

ψj =
ϕj

‖ϕj‖2
, j = 0, . . . , n ,

to obtain the system of orthonormal polynomials ψj , j = 0, . . . , n, on
(a, b). We then evaluate the coefficients β∗

j = 〈f, ψj〉, j = 0, . . . , n, and
form pn(x) = β∗

0ψ0(x) + · · · + β∗
nψn(x).

We may avoid the necessity of determining the normalised polynomials
ψj by writing

pn(x) = β∗
0ψ0(x) + · · · + β∗

nψn(x)

= β∗
0〈ϕ0, ϕ0〉−1/2ϕ0(x) + · · · + β∗

n〈ϕn, ϕn〉−1/2ϕn(x)

= γ0ϕ0(x) + · · · + γnϕn(x) , (9.12)

where

γj =
〈f, ϕj〉
〈ϕj , ϕj〉

, j = 0, . . . , n . (9.13)

Thus, as indicated at the beginning of the section, with this approach
to the construction of the polynomial of best approximation in the 2-
norm, we obtain the coefficients γj explicitly and there is no need to
solve a system of linear equations with a full matrix.

Example 9.8 We shall construct the polynomial of best approximation
of degree 2 in the 2-norm to the function f : x �→ ex over (0, 1) with
weight function w(x) ≡ 1.

We already know a system of orthogonal polynomials ϕ0, ϕ1, ϕ2 on this
interval from Example 9.5; thus, we seek p2 ∈ P2 in the form

p2(x) = γ0ϕ0(x) + γ1ϕ1(x) + γ2ϕ2(x) , (9.14)

where, according to (9.13),

γj =

∫ 1

0
exϕj(x)dx∫ 1

0
ϕ2
j (x)dx

, j = 0, 1, 2 .

Recalling from Example 9.5 that

ϕ0(x) ≡ 1 , ϕ1(x) = x − 1
2 , ϕ2(x) = x2 − x + 1

6 ,

we then have that
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γ0 = e − 1
1 = e − 1 ,

γ1 = 3/2 − e/2
1/12 = 18 − 6e ,

γ2 = 7e/6 − 19/6
1/180 = 210e − 570 .




(9.15)

Substituting the values of γ0, γ1 and γ2 into (9.14), we conclude that the
polynomial of best approximation of degree 2 for the function f : x �→ ex

in the 2-norm is

p2(x) = (210e − 570)x2 + (588 − 216e)x + (39e − 105) .

The approximation error is

‖f − p2‖2 = 0.005431 ,

to six decimal digits. �
We conclude this section by giving a property of orthogonal polyno-

mials that will be required in the next chapter.

Theorem 9.4 Suppose that ϕj, j = 0, 1, . . . , is a system of orthogonal
polynomials on the interval (a, b) with respect to the positive, continuous
and integrable weight function w on (a, b). It is understood that ϕj is a
polynomial of exact degree j. Then, for j ≥ 1, the zeros of the polynomial
ϕj are real and distinct, and lie in the interval (a, b).

Proof Suppose that ξi, i = 1, . . . , k, are the points in the open interval
(a, b) at which ϕj(x) changes sign. Let us note that k ≥ 1, because for
j ≥ 1, by orthogonality of ϕj(x) to ϕ0(x) ≡ 1, we have that∫ b

a

w(x)ϕj(x)dx = 0 .

Thus, the integrand, being a continuous function that is not identically
zero on (a, b), must change sign on (a, b); however, w is positive on (a, b),
so ϕj must change sign at least once on (a, b). Therefore k ≥ 1.

Let us define
πk(x) = (x − ξ1) . . . (x − ξk) . (9.16)

Now the function ϕj(x)πk(x) does not change sign in the interval (a, b),
since at each point where ϕj(x) changes sign πk(x) changes sign also.
Hence, ∫ b

a

w(x)ϕj(x)πk(x)dx �= 0 .
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However, ϕj is orthogonal to every polynomial of lower degree with
respect to the weight function w, so the degree of the polynomial πk
must be at least j; thus, k ≥ j. On the other hand, k cannot be greater
than j, since a polynomial of exact degree j cannot change sign more
than j times. Therefore k = j; i.e., the points ξi ∈ (a, b), i = 1, . . . , j,
are the zeros (and all the zeros) of ϕj(x).

9.5 Comparisons

We can show that the polynomial of best approximation in the 2-norm
for a function f ∈ C[a, b] is also a near-best approximation in the ∞-
norm for f on [a, b] in the sense defined in Section 8.5.

Theorem 9.5 Let n ≥ 0 and assume that f is defined and continuous
on the interval [a, b], and f /∈ Pn. Let pn be the polynomial of best
approximation of degree n to f in the 2-norm on [a, b], where the weight
function w is positive, continuous and integrable on (a, b). Then, the
difference f − pn changes sign at no less than n + 1 distinct points in
the interval (a, b).

Proof The proof is very similar to that of Theorem 9.4; we shall give an
outline and leave the details as an exercise.

As 〈f − pn, 1〉 = 0, i.e.,∫ b

a

w(x)(f(x) − pn(x))dx = 0 ,

and w(x) > 0 for all x ∈ (a, b), it follows that f − pn changes sign in
(a, b). Let ξj , j = 1, . . . , k, denote distinct points in (a, b) where f − pn
changes sign. We shall prove that k ≥ n + 1.

Define the polynomial πk(x) as in (9.16); then, w(x)[f(x)−pn(x)]πk(x)
does not change sign in (a, b), and so its integral over (a, b) is not zero.
Therefore, 〈f − pn, πk〉 �= 0. On the other hand, according to Theorem
9.3, f − pn is orthogonal to every polynomial of degree n or less. Hence
the degree of πk(x) must be greater than n, and so k ≥ n + 1.

We return to the example illustrated by Figure 8.5, and consider the
difference f − pn for the function f : x �→ e2x on the interval (0, 1). Fig-
ure 9.4 shows this difference for two polynomial approximations of degree
4: the minimax approximation of Section 8.5 and the best approxima-
tion in the 2-norm with weight function w(x) ≡ 1. It is clear that the
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Fig. 9.4. The difference e2x − p4(x) for two polynomial approximations of
degree 4 on [0, 1]. Thin curve – minimax approximation; thick curve – best
approximation in the 2-norm with weight function w(x) ≡ 1.
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Fig. 9.5. The difference e2x − p4(x) for two polynomial approximations of
degree 4 on [0, 1]. Thin curve – minimax approximation; thick curve – best

approximation in the 2-norm with weight function w(x) = [x(1 − x)]−1/2.

error of the 2-norm approximation has the right number of alternating
local maxima and minima, and is a near-minimax approximation from
P4 to f on [0, 1]; but the extrema at the ends of the interval are signif-
icantly larger than the internal extrema. If we use a weight function w
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which gives greater weight near the ends of the interval, it seems likely
that the extrema of the error might be more nearly equal. This can be
achieved by using the weight function w(x) = [x(1−x)]−1/2, so that the
orthogonal polynomials are the Chebyshev polynomials adapted to the
interval (0, 1). Figure 9.5 shows the corresponding difference f −pn, and
we now see that the two best approximations, in the ∞-norm and the
weighted 2-norm, are very close.

Polynomials of best approximation in the 2-norm have a special prop-
erty which is often useful. Suppose that we have constructed the best
polynomial approximation, pn, of degree n, in the 2-norm, but that pn
does not achieve the required accuracy. To construct the best poly-
nomial approximation of degree n + 1 all we need is to calculate γn+1

from

γn+1 =
〈f − pn, ϕn+1〉

‖ϕn+1‖2
2

and then let pn+1(x) = pn(x) + γn+1ϕn+1(x). By noting that

〈f − pn+1, ϕj〉 = 0 , j = 0, 1, . . . , n + 1 ,

it follows that pn+1 is best least squares approximation to f from Pn+1.
If we are constructing the minimax approximation of degree n + 1, or
using Lagrange interpolation with equally spaced points, the work in-
volved in constructing pn is lost, and the construction of pn+1 must
begin completely afresh.

9.6 Notes

We give some pointers to the vast literature on orthogonal polynomials.
The following are classical sources on the subject.

➧ Géza Freund, Orthogonal Polynomials, Pergamon Press, Oxford,
New York, 1971.

➧ Paul Névai, Orthogonal Polynomials, Memoirs of the American
Mathematical Society, no. 213, American Mathematical Society, Prov-
idence, RI, 1979.

➧ Gábor Szegő, Orthogonal Polynomials, Colloquium publications
(American Mathematical Society), 23, American Mathematical So-
ciety, Providence, RI, 1959.

Tables of orthogonal polynomials are found in
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➧ M. Abramowitz and I.A. Stegun (Editors), ‘Orthogonal polyno-
mials’, Ch. 22 in Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables, ninth printing, Dover, New York,
pp. 771–802, 1972.

Computational aspects of the theory of orthogonal polynomials are dis-
cussed in the edited volume

➧ W. Gautschi, G.H. Golub, and G. Opfer (Editors), Applica-
tions and Computation of Orthogonal Polynomials, Conference at the
Mathematical Research Institute, Oberwolfach, Germany, March 22–
28, 1998, Birkhäuser, Basel, 1999.

A recent survey of the theory and application of orthogonal polynomials
in numerical computations is contained in

➧ W. Gautschi, Orthogonal polynomials: applications and computa-
tion, Acta Numerica 5 (A. Iserles, ed.), Cambridge University Press,
Cambridge, pp. 45–119, 1996.

Finally, we refer to the books of Powell and Cheney, cited in the
Notes at the end of the previous chapter, concerning the application of
orthogonal polynomials in the field of best least squares approximation.

Exercises

9.1 Construct orthogonal polynomials of degrees 0, 1 and 2 on the
interval (0, 1) with the weight function w(x) = − lnx.

9.2 Let the polynomials ϕj , j = 0, 1, . . . , form an orthogonal sys-
tem on the interval (−1, 1) with respect to the weight function
w(x) ≡ 1. Show that the polynomials ϕj((2x − a − b)/(b − a)),
j = 0, 1, . . ., represent an orthogonal system for the interval
(a, b) and the same weight function. Hence obtain the polyno-
mials in Example 9.5 from the Legendre polynomials in Example
9.6.

9.3 Suppose that the polynomials ϕj , j = 0, 1, . . . , form an orthog-
onal system on the interval (0, 1) with respect to the weight
function w(x) = xα, α > 0. Find, in terms of ϕj , a system
of orthogonal polynomials for the interval (0, b) and the same
weight function.
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9.4 Show, by induction or otherwise, that, for 0 ≤ k ≤ n,(
d
dx

)k
(1 − x2)n = (1 − x2)n−kqk(x) ,

where qk is a polynomial of degree k. Deduce that all the deriva-
tives of the function (1 − x2)n of order less than n vanish at
x = ±1.

Define ϕj(x) = (d/dx)j(1 − x2)j , and show by repeated inte-
gration by parts that∫ 1

−1

ϕk(x)ϕj(x)dx = 0 , 0 ≤ k < j .

Hence verify the expressions in Example 9.6 for the Legendre
polynomials of degrees 0, 1, 2 and 3.

9.5 Show, by induction or otherwise, that, for 0 ≤ k ≤ j,(
d
dx

)k
xje−x = xj−kqk(x)e−x ,

where qk(x) is a polynomial of degree k.
The function ϕj is defined for j ≥ 0 by

ϕj(x) = ex
dj

dxj
(xje−x) .

Show that, for each j ≥ 0, ϕj is a polynomial of degree j,
and that these polynomials form an orthogonal system on the
interval (0,∞) with respect to the weight function w(x) = e−x.
Write down the polynomials with j = 0, 1, 2 and 3.

9.6 Suppose that ϕj , j = 0, 1, . . ., form a system of orthogonal poly-
nomials with weight function w(x) on the interval (a, b). Show
that, for some value of the constant Cj , ϕj+1(x) − Cjxϕj(x) is
a polynomial of degree j, and hence that

ϕj+1(x) − Cjxϕj(x) =
j∑
k=0

αjkϕk(x) , αjk ∈ R .

Use the orthogonality properties to show that αjk = 0 for
k < j − 1, and deduce that the polynomials satisfy a recurrence
relation of the form

ϕj+1(x) − (Cjx + Dj)ϕj(x) + Ejϕj−1(x) = 0 , j ≥ 1 .
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9.7 In the notation of Exercise 6 suppose that the normalisation of
the polynomials is so chosen that for each j the coefficient of xj

in ϕj(x) is positive. Show that Cj > 0 for all j. By considering∫ b

a

w(x)ϕj(x)[ϕj(x) − Cj−1xϕj−1(x)]dx

show that ∫ b

a

w(x)xϕj−1(x)ϕj(x)dx > 0 ,

and deduce that Ej > 0 for all j. Hence show that for all
positive values of j the zeros of ϕj and ϕj−1 interlace. (See the
proof of Theorem 5.8.)

9.8 Using the weight function w on the interval (a, b) apply a similar
argument to that for Theorem 8.6 to find the best polynomial
approximation pn of degree n in the 2-norm to the function
xn+1. Show that

‖xn+1 − pn‖2
2 =

∫ b

a

w(x)ϕ2
n+1dx/[c

n+1
n+1]

2 ,

where cn+1
n+1 is the coefficient of xn+1 in ϕn+1(x).

Write down the best polynomial approximation of degree 2
to the function x3 in the 2-norm with w(x) ≡ 1 on the interval
(−1, 1), and evaluate the 2-norm of the error.

9.9 Suppose that the weight w is an even function on the interval
(−a, a), and that a system of orthogonal polynomials ϕj , j =
0, . . . , n, on the interval (−a, a) is constructed by the Gram–
Schmidt process. Show that, if j is even, then ϕj is an even
function, and that, if j is odd, then ϕj is an odd function.

Now suppose that the best polynomial approximation of de-
gree n in the 2-norm to the function f on the interval (−a, a) is
expressed in the form

pn(x) = γ0ϕ0(x) + · · · + γnϕn(x) .

Show that if f is an even function, then all the odd coefficients
γ2j−1 are zero, and that if f is an odd function, then all the
even coefficients γ2j are zero.

9.10 The function H(x) is defined by H(x) = 1 if x > 0, and
H(−x) = −H(x). Construct the best polynomial approxima-
tions of degrees 0, 1 and 2 in the 2-norm to this function over
the interval (−1, 1) with weight function w(x) ≡ 1. (It may not
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appear very useful to consider a polynomial approximation to
a discontinuous function, but representations of such functions
by Fourier series will be familiar to most readers. Note that the
function H belongs to L2

w(−1, 1).)



10

Numerical integration – II

10.1 Introduction

In Section 7.2 we described the Newton–Cotes family of formulae for nu-
merical integration. These were constructed by replacing the integrand
by its Lagrange interpolation polynomial with equally spaced interpo-
lation points and integrating this exactly. Here, we consider another
family of numerical integration rules, called Gauss quadrature formulae,
which are based on replacing the integrand f by its Hermite interpo-
lation polynomial and choosing the interpolation points xj in such a
way that, after integrating the Hermite polynomial, the derivative val-
ues f ′(xj) do not enter the quadrature formula. It turns out that this
can be achieved by requiring that the xj are roots of a polynomial of a
certain degree from a system of orthogonal polynomials.

10.2 Construction of Gauss quadrature rules

Suppose that the function f is defined on the closed interval [a, b] and
that it is continuous and differentiable on this interval. Suppose, further,
that w is a weight function, defined, positive, continuous and integrable
on (a, b). We wish to construct quadrature formulae for the approximate
evaluation of the integral ∫ b

a

w(x)f(x)dx .

For a nonnegative integer n, let xi, i = 0, . . . , n, be n + 1 points in
the interval [a, b]; the precise location of these points will be determined
later on. The Hermite interpolation polynomial of degree 2n+ 1 for the

277
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function f is given by the expression (see Section 6.4)

p2n+1(x) =
n∑
k=0

Hk(x)f(xk) +
n∑
k=0

Kk(x)f ′(xk) , (10.1)

where

Hk(x) = [Lk(x)]2(1 − 2L′
k(xk)(x − xk)) ,

(10.2)
Kk(x) = [Lk(x)]2(x − xk) .

Further, for n ≥ 1, Lk ∈ Pn is defined by

Lk(x) =
n∏
i=0
i
=k

x − xi
xk − xi

, k = 0, 1, . . . , n ;

if n = 0, we let L0(x) ≡ 1 and thereby H0(x) ≡ 1 and K0(x) = x − x0

for this value of n. Thus, we deduce from (10.1) that∫ b

a

w(x)f(x)dx ≈
∫ b

a

w(x)p2n+1(x)dx

=
n∑
k=0

Wkf(xk) +
n∑
k=0

Vkf
′(xk) , (10.3)

where

Wk =
∫ b

a

w(x)Hk(x)dx , Vk =
∫ b

a

w(x)Kk(x)dx .

There is an obvious advantage in choosing the points xk in such a way
that all the coefficients Vk are zero, for then the derivative values f ′(xk)
are not required. Recalling the form of the polynomial Kk and inserting
it into the defining expression for Vk, we have

Vk =
∫ b

a

w(x)[Lk(x)]2(x − xk)dx

= Cn

∫ b

a

w(x)πn+1(x)Lk(x)dx , (10.4)

where πn+1(x) = (x − x0) . . . (x − xn) and

Cn =

{ (∏n
i=0,i
=k(xk − xi)−1

)
if n ≥ 1 ,

1 if n = 0 .

Since πn+1 is of degree n + 1 while Lk(x) is of degree n for each k,
0 ≤ k ≤ n, each Vk will be zero if the polynomial πn+1 is orthogonal
to every polynomial of lower degree with respect to the weight function



10.2 Construction of Gauss quadrature rules 279

w. We can therefore construct the required quadrature formula (10.3)
with Vk = 0, k = 0, . . . , n, by choosing the points xk, k = 0, . . . , n, to
be the zeros of the polynomial of degree n+ 1 in a system of orthogonal
polynomials over the interval (a, b) with respect to the weight function
w; we know from Theorem 9.4 that these zeros are real and distinct, and
all lie in the open interval (a, b).

Having chosen the location of the points xk, we now consider Wk:

Wk =
∫ b

a

w(x)Hk(x)dx

=
∫ b

a

w(x)[Lk(x)]2(1 − 2L′
k(xk)(x − xk))dx

=
∫ b

a

w(x)[Lk(x)]2dx − 2L′
k(xk)Vk . (10.5)

Since Vk = 0, the second term in the last line vanishes and thus we
obtain the following numerical integration formula, known as theGauss
quadrature1 rule:∫ b

a

w(x)f(x)dx ≈ Gn(f) =
n∑
k=0

Wkf(xk) , (10.6)

where the quadrature weights are

Wk =
∫ b

a

w(x)[Lk(x)]2dx , (10.7)

and the quadrature points xk, k = 0, . . . , n, are chosen as the zeros of
the polynomial of degree n+1 from a system of orthogonal polynomials
over the interval (a, b) with respect to the weight function w. Since
this quadrature rule was obtained by exact integration of the Hermite
interpolation polynomial of degree 2n+ 1 for f , it gives the exact result
whenever f is a polynomial of degree 2n + 1 or less.

Example 10.1 Consider the case n = 1, with the weight function
w(x) ≡ 1 over the interval (0, 1).

The quadrature points x0, x1 are then the zeros of the polynomial ϕ2

constructed in Example 9.5 and given by (9.8),

ϕ2(x) = x2 − x + 1
6 , (10.8)

1 Carl Friedrich Gauss, Methodus nova integralium valores per approximationem
inveniendi, 1814.
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and therefore

x0 = 1
2 − √ 1

12 , x1 = 1
2 +

√ 1
12 .

Clearly, x0 and x1 belong to the open interval (0, 1), in accordance with
Theorem 9.4. The weights are obtained from (10.7):

W0 =
∫ 1

0

(
x − x1

x0 − x1

)2

dx

= 3
∫ 1

0

(x2 − 2x1x + x2
1) dx

= 3( 1
3 − x1 + x2

1)

= 1
2 , (10.9)

and W1 = 1
2 in the same way. We thus have the Gauss quadrature rule∫ 1

0

f(x)dx ≈ 1
2f( 1

2 − √ 1
12 ) + 1

2f( 1
2 +

√ 1
12 ) , (10.10)

which is exact whenever f is a polynomial of degree 2 × 1 + 1 = 3 or
less. �

10.3 Direct construction

The calculation of the weights and the quadrature points in a Gauss
quadrature rule requires little work when the system of orthogonal poly-
nomials is already known. If this is not known, at the very least it is
necessary to construct the polynomial from the system whose roots are
the quadrature points; in that case a straightforward approach, which
avoids this construction, may be easier.

Suppose, for example, that we wish to find the values of A0, A1, x0

and x1 such that the quadrature rule∫ 1

0

f(x)dx ≈ A0f(x0) + A1f(x1) (10.11)

is exact for all f ∈ P3.
We have to determine four unknowns, A0, A1, x0 and x1, so we need

four equations; thus we take, in turn, f(x) ≡ 1, f(x) = x, f(x) = x2

and f(x) = x3 and demand that the quadrature rule (10.11) is exact
(that is, the integral of f is equal to the corresponding approximation
obtained by inserting f into the right-hand side of (10.11)). Hence,

1 = A0 + A1 , (10.12)
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1
2 = A0x0 + A1x1 , (10.13)
1
3 = A0x

2
0 + A1x

2
1 , (10.14)

1
4 = A0x

3
0 + A1x

3
1 . (10.15)

It remains to solve this system. To do so, we consider the quadratic
polynomial π2 defined by

π2(x) = (x − x0)(x − x1)

whose roots are the unknown quadrature points x0 and x1. In expanded
form, π2(x) can be written as

π2(x) = x2 + px + q .

First we shall determine p and q; then we shall find the roots x0 and
x1 of π2. We shall then insert the values of x0 and x1 into (10.13) and
solve the linear system (10.12), (10.13) for A0 and A1.

To find p and q, we multiply (10.12) by q, (10.13) by p and (10.14) by
1, and we add up the resulting equations to deduce that

1
3 + 1

2p + q = A0(x2
0 + px0 + q) + A1(x2

1 + px1 + q)

= A0π2(x0) + A1π2(x1) = A0 · 0 + A1 · 0 = 0 .

Therefore,
1
3 + 1

2p + q = 0 . (10.16)

Similarly, we multiply (10.13) by q, (10.14) by p and (10.15) by 1, and
we add up the resulting equations to obtain

1
4 + 1

3p + 1
2q = A0x0(x2

0 + px0 + q) + A1x1(x2
1 + px1 + q)

= A0x0π2(x0) + A1x1π2(x1) = A0 · 0 + A1 · 0 = 0 .

Thus,
1
4 + 1

3p + 1
2q = 0 . (10.17)

From (10.16) and (10.17) we immediately find that p = −1 and q = 1
6 .

Having determined p and q, we see that

π2(x) = x2 − x + 1
6 ,

in agreement with (10.8). We then find the roots of this quadratic poly-
nomial to give x0 and x1 as before. With these values of x0 and x1 we
deduce from (10.12) and (10.13) that

A0 + A1 = 1 ,

A0( 1
2 +

√ 1
12 ) − A1( 1

2 − √ 1
12 ) = 0 ,
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and therefore A0 = A1 = 1
2 . Thus, we conclude that the required

quadrature rule is (10.10), as before.
It is easy to see that equations (10.16) and (10.17) express the condi-

tion that the polynomial x2 + px + q is orthogonal to the polynomials
1 and x respectively. This alternative approach has simply constructed
a quadratic polynomial from a system of orthogonal polynomials by re-
quiring that it is orthogonal to every polynomial of lower degree, instead
of building up the whole system of orthogonal polynomials.

A straightforward calculation shows that, in general, the quadrature
rule (10.10) is not exact for polynomials of degree higher than 3 (take
f(x) = x4, for example, to verify this).

Example 10.2 We shall apply the quadrature rule (10.10) to compute
an approximation to the integral I =

∫ 1

0
exdx.

Using (10.10) with f(x) = exp(x) = ex yields

I ≈ 1
2exp

(
1
2 −

√
1
12

)
+ 1

2exp
(

1
2 +

√
1
12

)
=

√
e cosh

√
1
12 .

On rounding to six decimal digits, I ≈ 1.717896. The exact value of the
integral is I = e − 1 = 1.718282, rounding to six decimal digits. �

10.4 Error estimation for Gauss quadrature

The next theorem provides a bound on the error that has been commit-
ted by approximating the integral on the left-hand side of (10.6) by the
quadrature rule on the right.

Theorem 10.1 Suppose that w is a weight function, defined, integrable,
continuous and positive on (a, b), and that f is defined and continuous
on [a, b]; suppose further that f has a continuous derivative of order
2n+2 on [a, b], n ≥ 0. Then, there exists a number η in (a, b) such that∫ b

a

w(x)f(x)dx −
n∑
k=0

Wkf(xk) = Knf
(2n+2)(η) , (10.18)

and

Kn =
1

(2n + 2)!

∫ b

a

w(x)[πn+1(x)]2dx .

Consequently, the integration formula (10.6), (10.7) will give the exact
result for every polynomial of degree 2n + 1.
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Proof Recalling the definition of the Hermite interpolation polynomial
p2n+1 for the function f and using Theorem 6.4, we have∫ b

a

w(x)f(x)dx −
n∑
k=0

Wkf(xk) =
∫ b

a

w(x)(f(x) − p2n+1(x))dx

=
∫ b

a

w(x)
f (2n+2)(ξ(x))

(2n + 2)!
[πn+1(x)]2dx .

(10.19)

However, by the Integral Mean Value Theorem, Theorem A.6, the last
term is equal to

f (2n+2)(η)
(2n + 2)!

∫ b

a

w(x)[πn+1(x)]2dx ,

for some η ∈ (a, b), and hence the desired error bound.

Note that, by virtue of Theorem 10.1, the Gauss quadrature rule gives
the exact value of the integral when f is a polynomial of degree 2n + 1
or less, which is the highest possible degree that one can hope for with
the 2n + 2 free parameters consisting of the quadrature weights Wk,
k = 0, . . . , n, and the quadrature points xk, k = 0, . . . , n.

A different approach leads to a proof of convergence of the Gauss
formulae Gn(f), defined in (10.6), (10.7), as n → ∞.

Theorem 10.2 Suppose that the weight function w is defined, positive,
continuous and integrable on the open interval (a, b). Suppose also that
the function f is continuous on the closed interval [a, b]. Then,

lim
n→∞Gn(f) =

∫ b

a

w(x)f(x)dx .

Proof If we choose any positive real number ε0 then, since f is continuous
on [a, b], the Weierstrass Theorem (Theorem 8.1) shows that there is a
polynomial p such that

|f(x) − p(x)| ≤ ε0 for all x ∈ [a, b] . (10.20)

Let N be the degree of this polynomial, and write p as pN .
Thus we deduce that∫ b

a

w(x)f(x)dx − Gn(f) =
∫ b

a

w(x)[f(x) − pN (x)]dx

+
∫ b

a

w(x)pN (x)dx − Gn(pN )

+ Gn(pN ) − Gn(f) . (10.21)
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Consider the first term on the right of this equality; it follows from
(10.20) that ∣∣∣∣∣

∫ b

a

w(x)[f(x) − pn(x)]dx

∣∣∣∣∣ ≤ ε0W ,

where

W =
∫ b

a

w(x)dx .

For the last term on the right of (10.21),

|Gn(f) − Gn(pN )| ≤
n∑
k=0

|Wk[f(xk) − pN (xk)]|

≤ ε0

n∑
k=0

Wk

= ε0

∫ b

a

w(x)dx

= ε0W , (10.22)

where we have used the fact that all the quadrature weights Wk are pos-
itive (see (10.7)), and that a Gauss quadrature rule integrates a constant
function exactly. Now for the middle term in (10.21), if we define N0

to be the integer part of 1
2N , we see that when n ≥ N0 the quadrature

formula is exact for all polynomials of degree 2N0 + 1 or less, and hence
for the polynomial pN (given that N ≤ 2N0 + 1 ≤ 2n + 1). Therefore,∫ b

a

w(x)pN (x)dx − Gn(pN ) = 0 if n ≥ N0 .

Putting these three terms together, we see that∣∣∣∣∣
∫ b

a

w(x)f(x)dx − Gn(f)

∣∣∣∣∣ ≤ ε0W + 0 + ε0W if n ≥ N0 .

Finally, given any positive number ε, we define ε0 = ε/(2W ) and find
the corresponding value of N0 = N0(ε) to deduce that∣∣∣∣∣

∫ b

a

w(x)f(x)dx − Gn(f)

∣∣∣∣∣ ≤ ε if n ≥ N0 ,

which is what we were required to prove.
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The interest of this theorem is mainly theoretical, as it gives no in-
dication of how rapidly the error tends to zero. However, it does show
the importance of the fact that the weights Wk are positive. Much of
the above proof would apply with little change to the Newton–Cotes
formulae of Section 7.2. We saw there that for the formulae of order 1
and 2, the trapezium rule and Simpson’s rule, the weights are positive.
However, when n > 8 some of the weights in the Newton–Cotes formula
of order n become negative. In this case we have

∑n
k=0 Wk = (b − a),

but we find that
∑n
k=0 |Wk| → ∞ as n → ∞, so the proof breaks down.

Stronger conditions must be imposed on the function f to ensure that
the Newton–Cotes formula converges to the required integral. (See the
example in Section 7.4.)

10.5 Composite Gauss formulae

It is often useful to define composite Gauss formulae, just as we did for
the trapezium rule and Simpson’s rule in Section 7.5. Let us suppose,
for the sake of simplicity, that w(x) ≡ 1. We divide the range [a, b]
into m subintervals [xj−1, xj ], j = 1, 2, . . . ,m, m ≥ 2, each of width
h = (b − a)/m, and write∫ b

a

f(x)dx =
m∑
j=1

∫ xj

xj−1

f(x)dx ,

where

xj = a + jh , j = 0, 1, . . . ,m .

We then map each of the subintervals [xj−1, xj ], j = 1, 2, . . . ,m, onto
the reference interval [−1, 1] by the change of variable

x = 1
2 (xj−1 + xj) + 1

2ht , t ∈ [−1, 1] ,

giving ∫ b

a

f(x)dx = 1
2h

m∑
j=1

∫ 1

−1

gj(t)dt = 1
2h

m∑
j=1

Ij ,

where

gj(t) = f
(

1
2 (xj−1 + xj) + 1

2ht
)

and Ij =
∫ 1

−1

gj(t)dt .

The composite Gauss quadrature rule is then obtained by applying
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the same Gauss formula to each of the integrals Ij . This gives∫ b

a

f(x)dx ≈ 1
2h

m∑
j=1

n∑
k=0

Wkgj(ξk)

= 1
2h

m∑
j=1

n∑
k=0

Wkf
(

1
2 (xj−1 + xj) + 1

2hξk
)
,

(10.23)

where ξk are the quadrature points in (−1, 1) and Wk are the associated
weights for k = 0, . . . , n with n ≥ 0.

An expression for the error of this composite formula is obtained, as
in Section 7.5, by adding the expressions (10.18) for the errors in the
integrals Ij . The result is

En,m = Cn
(b − a)2n+3

22n+3m2n+2(2n + 2)!
f (2n+2)(η) (10.24)

where η ∈ (a, b) and

Cn =
∫ 1

−1

[πn+1(t)]2dt .

Definition 10.1 The composite midpoint rule is the composite Gauss
formula with w(x) ≡ 1 and n = 0 defined by∫ b

a

f(x)dx ≈ h
m∑
j=1

f(a + (j − 1
2 )h) . (10.25)

This follows from the fact that when n = 0 there is one quadrature
point ξ0 = 0 in (−1, 1), which is at the midpoint of the interval, and
the corresponding quadrature weight W0 is equal to the length of the
interval (−1, 1), i.e., W0 = 2. It follows from (10.24) with n = 0 and

C0 =
∫ 1

−1

t2dt = 2
3

that the error in the composite midpoint rule is

E0,m =
(b − a)3

24m2
f ′′(η) ,

where η ∈ (a, b), provided that the function f has a continuous second
derivative on [a, b].
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10.6 Radau and Lobatto quadrature

We have now discussed two types of quadrature formulae, which have the
same form,

∑n
k=0 Wkf(xk). In the Newton–Cotes formulae the (equally

spaced) quadrature points xk are given, and we were able to find the
weights Wk so that the result was exact for polynomials of degree n.
By allowing the quadrature points as well as the weights to be freely
chosen, we constructed Gauss quadrature formulae which were exact for
polynomials of degree 2n + 1. There are also many possible formulae
of mixed type, where some, but not all, of the quadrature points are
given, and the rest can be freely chosen. We might expect that each
quadrature point which is fixed will reduce the degree of polynomial for
which such a formula is exact by 1, from the maximum degree of 2n+1.

It is often useful to be able to fix one of the endpoints of the interval
as one of the quadrature points. As an example, suppose we prescribe
that x0 = a. Let p2n be an arbitrary polynomial of degree 2n, and write

p2n(x) = (x − a)q2n−1(x) + r ,

where the quotient q2n−1 is a polynomial of degree 2n − 1 and the re-
mainder r is a constant. The integral of w p2n is then∫ b

a

w(x)p2n(x)dx =
∫ b

a

(x − a)w(x)q2n−1(x)dx + r

∫ b

a

w(x)dx .

We can now construct the usual Gauss quadrature formula for the in-
terval [a, b] with the modified weight function (x − a)w(x), giving n

quadrature points and n weights x∗
k, W ∗

k , k = 1, . . . , n. This formula
will be exact for all polynomials q of degree 2n − 1. Provided that the
weight function w satisfies the standard conditions on (a, b), the modi-
fied weight function does also; in particular it is clearly positive on (a, b).
This gives∫ b

a

w(x)p2n(x)dx =
n∑
k=1

W ∗
k q2n−1(x∗

k) + r

∫ b

a

w(x)dx

=
n∑
k=1

W ∗
k

x∗
k − a

p2n(x∗
k)

+r

[∫ b

a

w(x)dx −
n∑
k=1

W ∗
k

x∗
k − a

]
. (10.26)
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The fact that r = p2n(a) then leads us to consider the quadrature rule∫ b

a

w(x)f(x)dx ≈ W0f(a) +
n∑
k=1

Wkf(xk) , (10.27)

where

Wk = W ∗
k /(x

∗
k − a) , k = 1, . . . , n ,

(10.28)

W0 =
∫ b

a

w(x)dx −
n∑
k=1

Wk .

By construction, this formula is exact for all polynomials of degree 2n.
It is obvious that Wk > 0 for k = 1, . . . , n. We leave it as an exercise to
show that W0 > 0 also (see Exercise 5).

With only trivial changes it is easy to see how to construct a similar
formula where instead of fixing x0 = a we fix xn = b. These are known as
Radau quadrature formulae. We leave it as an exercise to construct
the formula corresponding to fixing both x0 = a and xn = b, which is
known as a Lobatto quadrature formula; as might be expected, this
is exact for all polynomials of degree 2n − 1 (see Exercise 7).

The formal process could evidently be generalised to allow for fixing
one of the quadrature points at an internal point c, where a < c < b.
However, this leads to the difficulty that the modified weight function

w∗: x �→ (x − c)w(x)

is not positive over the whole interval (a, b); hence we can no longer be
sure that it is possible to construct a system of orthogonal polynomials,
or, even if we can, that these polynomials will have all their zeros real
and distinct and lying in [a, b]. In general, therefore, such quadrature
formulae may not exist.

10.7 Note

For a detailed guide to the literature on Gauss quadrature rules and
its connection to the theory of orthogonal polynomials, we refer to the
books cited in the Notes at the end of Chapter 7.

Exercises

10.1 Determine the quadrature points and weights for the weight
function w: x �→ − lnx on the interval (0, 1), for n = 0 and
n = 1.
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10.2 The weights in the Gauss quadrature formula are given by (10.7),
which is

Wk =
∫ b

a

w(x)[Lk(x)]2dx .

Show that Wk can also be calculated from

Wk =
∫ b

a

w(x)Lk(x)dx .

(This is a simpler way of calculating Wk than (10.7); the impor-
tance of (10.7) is that it shows that the weights are all positive.)

10.3 Suppose that f has a continuous second derivative on [0, 1].
Show that there is a point ξ in (0, 1) such that∫ 1

0

xf(x)dx = 1
2f( 2

3 ) + 1
72f

′′(ξ) .

10.4 Let n ≥ 0. Write down the quadrature points xj , j = 0, . . . , n,
for the weight function w: x �→ (1 − x2)−1/2 on the interval
(−1, 1).

By induction, or otherwise, show that for positive integer val-
ues of n,

n∑
j=0

cos(2j + 1)ϑ =
sin(2n + 2)ϑ

2 sinϑ
,

unless ϑ is a multiple of π. What is the value of the sum when
ϑ is a multiple of π?

Deduce that
n∑
j=0

Tk(xj) =
∫ 1

−1

(1 − x2)−1/2Tk(x) dx , k = 1, . . . , n ,

and show that
n∑
j=0

T0(xj) =
n + 1
π

∫ 1

−1

(1 − x2)−1/2T0(x) dx ,

where Tn is the Chebyshev polynomial of degree n.
Deduce that the weights of the quadrature formula with weight

function w: x �→ (1 − x2)−1/2 on the interval (−1, 1) are

Wk =
π

n + 1
, k = 0, . . . , n .

10.5 In the notation for the construction of the Radau quadrature
formula in Section 10.6, show that W0 > 0.
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10.6 The Laguerre polynomials1 Lj , j = 0, 1, 2, . . . , are the or-
thogonal polynomials associated with the weight function w: x �→
e−x on the semi-infinite interval (0,∞), with Lj of exact degree
j. (See Exercise 5.9.) Show that∫ ∞

0

e−xx[Lj(x) − L′
j(x)]pr(x)dx = 0

when pr is any polynomial of degree less than j.
In the Radau formula∫ ∞

0

e−xp2n(x)dx = W0p2n(0) +
n∑
k=1

Wkp2n(xk) ,

where one of the quadrature points is fixed at x = 0, show that
the other quadrature points xk, k = 1, . . . , n, are the zeros of
the polynomial Ln − L′

n. Deduce that∫ ∞

0

e−xp2(x)dx = 1
2p2(0) + 1

2p2(2) .

10.7 Let n ≥ 2. Show that a polynomial p2n−1 of degree 2n − 1 can
be written

p2n−1(x) = (x − a)(b − x)q2n−3(x) + r(x − a) + s(b − x) ,

where q2n−3 is a polynomial of degree 2n − 3, and r and s are
constants. Hence construct the Lobatto quadrature formula∫ b

a

w(x)f(x)dx ≈ W0f(a) +
n−1∑
k=1

Wkf(xk) + Wnf(b) ,

which is exact when f is any polynomial of degree 2n−1. Show
that all the weights Wk, k = 0, 1, . . . , n, are positive.

10.8 Construct the Lobatto quadrature formula∫ 1

−1

f(x) ≈ A0f(−1) + A1f(x1) + A2f(1)

for the interval (−1, 1) with weight function w(x) ≡ 1, and with
n = 2; write down and solve four equations to determine x1, A0,
A1 and A2.

1 Edmond Nicolas Laguerre (9 April 1834, Bar-le-Duc, France – 14 Aug 1886, Bar-
le-Duc, France.)
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10.9 Write Tm for the composite trapezium rule (7.15), Sm for the
composite Simpson rule (7.17) and Mm for the composite mid-
point rule (10.25), each with m subintervals. Show that

Mm = 2I2m − Im , Sm =
4I2m − Im

3
, Sm =

2Mm + Im
3

.
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Piecewise polynomial approximation

11.1 Introduction

Up to now, the focus of our discussion has been the question of approxi-
mation of a given function f , defined on an interval [a, b], by a polynomial
on that interval either through Lagrange interpolation or Hermite inter-
polation, or by seeking the polynomial of best approximation (in the
∞-norm or 2-norm). Each of these constructions was global in nature,
in the sense that the approximation was defined by the same analytical
expression on the whole interval [a, b]. An alternative and more flexible
way of approximating a function f is to divide the interval [a, b] into
a number of subintervals and to look for a piecewise approximation by
polynomials of low degree. Such piecewise-polynomial approximations
are called splines, and the endpoints of the subintervals are known as
the knots.

More specifically, a spline of degree n, n ≥ 1, is a function which is a
polynomial of degree n or less in each subinterval and has a prescribed
degree of smoothness. We shall expect the spline to be at least continu-
ous, and usually also to have continuous derivatives of order up to k for
some k, 0 ≤ k < n. Clearly, if we require the derivative of order n to
be continuous everywhere the spline is just a single polynomial, since if
two polynomials have the same value and the same derivatives of every
order up to n at a knot, then they must be the same polynomial. An
important class of splines have degree n, with continuous derivatives of
order up to and including n− 1, but as we shall see later, lower degrees
of smoothness are sometimes considered.

To give a flavour of the theory of splines, we concentrate here on two
simple cases: linear splines and cubic splines.

292
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11.2 Linear interpolating splines

Definition 11.1 Suppose that f is a real-valued function, defined and
continuous on the closed interval [a, b]. Further, let K = {x0, . . . , xm}
be a subset of [a, b], with a = x0 < x1 < · · · < xm = b, m ≥ 2. The
linear spline sL, interpolating f at the points xi, is defined by

sL(x) =
xi − x

xi − xi−1
f(xi−1) +

x − xi−1

xi − xi−1
f(xi) ,

x ∈ [xi−1, xi] , i = 1, 2, . . . ,m . (11.1)

The points xi, i = 0, 1, . . . ,m, are the knots of the spline, and K is
referred to as the set of knots.

As the function sL interpolates the function f at the knots, i.e.,
sL(xi) = f(xi), i = 0, 1, . . . ,m, and over each interval [xi−1, xi], for
i = 0, 1, . . . ,m, the function sL is a linear polynomial (and therefore
continuous), we conclude that sL is a continuous piecewise linear func-
tion on the interval [a, b].

Given a set of knots K = {x0, . . . , xm}, we shall use the notation
hi = xi − xi−1, and let h = maxi hi. Also, for a positive integer k,
we denote by Ck[a, b] the set of all real-valued functions, defined and
continuous on the closed interval [a, b], such that all derivatives, up to
and including order k, are defined and continuous on [a, b].

In order to highlight the accuracy of interpolation by linear splines we
state the following error bound in the ∞-norm over the interval [a, b].

Theorem 11.1 Suppose that f ∈ C2[a, b] and let sL be the linear spline
that interpolates f at the knots a = x0 < x1 < · · · < xm = b; then, the
following error bound holds:

‖f − sL‖∞ ≤ 1
8
h2‖f ′′‖∞ ,

where h = maxi hi = maxi(xi − xi−1), and ‖ · ‖∞ denotes the ∞-norm
over [a, b], defined in (8.1).

Proof Consider a subinterval [xi−1, xi], 1 ≤ i ≤ m. According to Theo-
rem 6.2, applied on the interval [xi−1, xi],

f(x) − sL(x) =
1
2
f ′′(ξ)(x − xi−1)(x − xi) , x ∈ [xi−1, xi] ,
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where ξ = ξ(x) ∈ (xi−1, xi). Thus,

|f(x) − sL(x)| ≤ 1
8
h2
i max
ζ∈[xi−1,xi]

|f ′′(ζ)| .

Hence,

|f(x) − sL(x)| ≤ 1
8
h2‖f ′′‖∞ ,

for each x ∈ [xi−1, xi] and each i = 1, 2, . . . ,m. This gives the required
error bound.

Figure 11.1 shows a typical example: a linear spline approximation
to the function f : x �→ e−3x over the interval [0, 1], using two internal
knots, x1 = 1

3 , x2 = 2
3 , together with the endpoints of the interval,

x0 = 0 and x3 = 1.

✲

✻

x

y

���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�� � � ��� � � ��� � � �� � � � �� � � ��� � � �� � � � �� � � ��� � �� �� � � � �� � � ��� � � ��� � � �� � � � ���� ��� �� �� ��� ��

�

�

�

�

�

0
�

1
3

�

2
3

�

1

Fig. 11.1. The function f : x �→ e−3x (full curve) and its linear spline approxi-
mation (dotted curve). The interval is [0, 1], and the knots are at 0, 1

3
, 2

3
and

1.

We conclude this section with a result that provides a characterisation
of linear splines from the viewpoint of the calculus of variations.

A subset A of the real line is said to have measure zero if it can
be contained in a countable union of open intervals of arbitrarily small
total length; in other words, for every ε > 0 there exists a sequence of
open intervals (ai, bi), i = 1, 2, 3, . . ., such that

A ⊂
∞⋃
i=1

(ai, bi) and
∞∑
i=1

(bi − ai) < ε .
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In particular, any finite or countable set A ⊂ R has measure zero. For
example, the set of all rational numbers is countable, and therefore it
has measure zero. Trivially, the empty set has measure zero.

Suppose that B is a subset of R. We shall say that a certain property
P = P(x) holds for almost every x in B, if there exists a set A ⊂ B of
measure zero such that P(x) holds for all x ∈ B \ A.

A real-valued function v defined on the interval [a, b] is said to be
absolutely continuous on [a, b] if it has finite derivative v′(ξ) at almost
every point ξ in [a, b], v′ is (Lebesgue-) integrable on [a, b], and∫ x

a

v′(ξ)dξ = v(x) − v(a) , a ≤ x ≤ b .

Example 11.1 Any v ∈ C1[a, b] is absolutely continuous on the interval
[a, b]. The function x �→

∣∣x − 1
2 (a + b)

∣∣ is absolutely continuous on [a, b],
but it does not belong to C1[a, b] as it is not differentiable at x = 1

2 (a+b).

Let us denote by H1(a, b) the set of all absolutely continuous functions
v defined on [a, b] such that v′ ∈ L2(a, b), i.e.,

‖v′‖2 =

(∫ b

a

|v′(ξ)|2dξ
)1/2

< ∞ .

We observe in passing that any function v ∈ H1(a, b) is uniformly
continuous on the closed interval [a, b]. This follows by noting that, for
any pair of points x, y ∈ [a, b],

|v(x) − v(y)| =
∣∣∣∣
∫ y

x

v′(ξ) dξ
∣∣∣∣

≤ |x − y|
1
2

∣∣∣∣
∫ y

x

|v′(ξ)|2dξ
∣∣∣∣
1/2

≤ |x − y|
1
2 ‖v′‖2 .

In the transition from the first line to the second we used the Cauchy–
Schwarz inequality.

If k ≥ 1, we shall denote by Hk+1(a, b) the set of all v ∈ Hk(a, b) such
that v(k) is absolutely continuous on [a, b] and v(k+1) ∈ L2(a, b). The set
Hk(a, b) is called a Sobolev space of index k. We observe that

Ck[a, b] ⊂ Hk(a, b)

for any k ≥ 1, with strict inclusion. For example, any linear spline on
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[a, b] belongs to H1(a, b), but not to C1[a, b] unless it is a linear function
over the whole of the interval [a, b].

Example 11.2 Let α > 1/2; the function x �→ xα then belongs to
H1(0, 1), although it only belongs to C1[0, 1] if α ≥ 1.
As a second example, consider the function x �→ x lnx which belongs

to H1(0, 1), but not to C1[0, 1].

The variational characterisation of linear splines stated in the next
theorem expresses the fact that, among all functions v ∈ H1(a, b) which
interpolate a given continuous function f at a fixed set of knots in [a, b],
the linear spline sL that interpolates f at these knots is the ‘flattest’, in
the sense that its ‘average slope’ ‖s′L‖2 is smallest.

Theorem 11.2 Suppose that sL is the linear spline that interpolates
f ∈ C[a, b] at the knots a = x0 < x1 < · · · < xm = b. Then, for any
function v in H1(a, b) that also interpolates f at these knots,

‖s′L‖2 ≤ ‖v′‖2 .

Proof Let us observe that

‖v′‖2
2 =

∫ b

a

(v′(x) − s′L(x))2dx +
∫ b

a

|s′L(x)|2dx

+2
∫ b

a

(v′(x) − s′L(x))s′L(x)dx . (11.2)

We shall now use integration by parts to show that the last integral is
equal to 0; the desired inequality will then follow by noting that the first
term on the right-hand side is nonnegative and it is equal to 0 if, and
only if, v = sL. Clearly,∫ b

a

(v′(x) − s′L(x))s′L(x)dx =
m∑
k=1

∫ xk

xk−1

(v′(x) − s′L(x))s′L(x)dx

=
m∑
k=1

[(v(xk) − sL(xk))s′L(xk−) − (v(xk−1) − sL(xk−1))s′L(xk−1+)

−
∫ xk

xk−1

(v(x) − sL(x))s′′L(x)dx] . (11.3)

Now v(xi) − sL(xi) = f(xi) − f(xi) = 0 for i = 0, 1, . . . ,m and, since
sL is a linear polynomial over each of the open intervals (xk−1, xk), k =
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xk xk+1

ϕk

1

xk–1

Fig. 11.2. The linear basis spline (or hat function) ϕk, 1 ≤ k ≤ m− 1.

1, 2, . . . ,m, it follows that s′′L is identically 0 on each of these intervals.
Thus, the expression in the square bracket in (11.3) is equal to 0 for each
k = 1, 2, . . . ,m.

Sobolev spaces play an important role in approximation theory. We
shall encounter them again in Chapter 14 which is devoted to the ap-
proximation of solutions to differential equations by piecewise polyno-
mial functions.

11.3 Basis functions for the linear spline

Suppose that sL is a linear spline with knots xi, i = 0, 1, . . . ,m, interpo-
lating the function f ∈ C[a, b]. Instead of specifying the value of sL on
each subinterval [xi−1, xi], i = 1, 2, . . . ,m, we can express sL as a linear
combination of suitable ‘basis functions’ ϕk as follows:

sL(x) =
m∑
k=0

ϕk(x)f(xk) , x ∈ [a, b] .

Here, we require that each ϕk is itself a linear spline which vanishes at
every knot except xk, and ϕk(xk) = 1. The function ϕk is often known
as the linear basis spline or hat function, and is depicted in Figure
11.2.
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The formal definition of ϕk is as follows:

ϕk(x) =




0 if x ≤ xk−1 ,

(x − xk−1)/hk if xk−1 ≤ x ≤ xk ,

(xk+1 − x)/hk+1 if xk ≤ x ≤ xk+1 ,

0 if xk+1 ≤ x ,
for k = 1, . . . ,m − 1, and with

ϕ0(x) =
{

(x1 − x)/h0 if a = x0 ≤ x ≤ x1 ,

0 if x1 ≤ x

and

ϕm(x) =
{

0 if x ≤ xm−1 ,

(x − xm−1)/hm if xm−1 ≤ x ≤ xm = b .




(11.4)

11.4 Cubic splines

Suppose that f ∈ C[a, b] and let K = {x0, . . . , xm} be a set of m + 1
knots in the interval [a, b], a = x0 < x1 < · · · < xm = b. Consider the
set S of all functions s ∈ C2[a, b] such that

� s(xi) = f(xi), i = 0, 1, . . . ,m,
� s is a cubic polynomial on [xi−1, xi], i = 1, 2, . . . ,m.

Any element of S is referred to as an interpolating cubic spline.
We note that, unlike linear splines which are uniquely determined by
the interpolating conditions, there is more than one interpolating cubic
spline s ∈ C2[a, b] that satisfies the two conditions stated above; indeed,
there are 4m coefficients of cubic polynomials (four on each subinterval
[xi−1, xi], i = 1, 2, . . . ,m), and only m + 1 interpolating conditions and
3(m − 1) continuity conditions; since s belongs to C2[a, b], this means
that s, s′ and s′′ are continuous at the internal knots x1, . . . , xm−1.
Hence, we have a total of 4m− 2 conditions for the 4m unknown coeffi-
cients. Depending on the choice of the remaining two conditions we can
construct various interpolating cubic splines.

An important class of cubic splines is singled out by the following
definition.

Definition 11.2 The natural cubic spline, denoted by s2, is the ele-
ment of the set S satisfying the end conditions

s′′2(x0) = s′′2(xm) = 0 .
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We shall prove that this definition is correct in the sense that the two
additional conditions in Definition 11.2 uniquely determine s2: this will
be done by describing an algorithm for constructing s2.
Construction of the natural cubic spline. Let us begin by defin-

ing σi = s′′2(xi), i = 0, 1, . . . ,m, and noting that s′′2 is a linear function
on each subinterval [xi−1, xi]. Therefore, s′′2 can be expressed as

s′′2(x) =
xi − x

hi
σi−1 +

x − xi−1

hi
σi , x ∈ [xi−1, xi] .

Integrating this twice we obtain

s2(x) =
(xi − x)3

6hi
σi−1 +

(x − xi−1)3

6hi
σi

+αi(x − xi−1) + βi(xi − x) , x ∈ [xi−1, xi] , (11.5)

where αi and βi are constants of integration. Equating s2 with f at the
knots xi−1, xi yields

f(xi−1) =
1
6
σi−1h

2
i + hiβi , f(xi) =

1
6
σih

2
i + hiαi . (11.6)

Expressing αi and βi from these, inserting them into (11.5) and ex-
ploiting the continuity of s′2 at the internal knots, (i.e., using that
s′2(xi−) = s′2(xi+), i = 1, . . . ,m − 1), gives

hiσi−1 + 2(hi+1 + hi)σi + hi+1σi+1

= 6
(
f(xi+1) − f(xi)

hi+1
− f(xi) − f(xi−1)

hi

)
(11.7)

for i = 1, . . . ,m − 1, together with

σ0 = σm = 0 ,

which is a system of linear equations for the σi. The matrix of the
system is tridiagonal and nonsingular, since the conditions of Theorem
3.4 are clearly satisfied. By solving this linear system we obtain the σi,
i = 0, 1, . . . ,m, and thereby all the αi, βi, i = 1, 2, . . . ,m, from (11.6).

We have seen in a previous section, in Theorem 11.2, that a linear
spline can be characterised as a minimiser of the functional v �→ ‖v′‖2

over all v ∈ H1(a, b) which interpolate a given continuous function at the
knots of the spline. Natural cubic splines have an analogous property:
among all functions v ∈ H2(a, b) which interpolate a given continuous
function f at a fixed set of knots in [a, b], the natural cubic spline s2

is smoothest, in the sense that it minimises v �→ ‖v′′‖2, the ‘average
curvature’ of v.
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Theorem 11.3 Let s2 be the natural cubic spline that interpolates a
function f ∈ C[a, b] at the knots a = x0 < x1 < · · · < xm = b. Then, for
any function v in H2(a, b) that also interpolates f at the knots,

‖s′′2‖2 ≤ ‖v′′‖2 .

The proof is analogous to that of Theorem 11.2 and is left as an
exercise.

The smoothest interpolation property expressed by Theorem 11.3 is
the source of the name spline.1 A spline is a flexible thin curve-drawing
aid, made of wood, metal or acrylic. Assuming that its shape is given by
the equation y = v(x), x ∈ [a, b], and is constrained by requiring that it
passes through a finite set of prescribed points in the plane, v will take
on a shape which minimises the strain energy

E(v) =
∫ b

a

|v′′(x)|2
(1 + |v′(x)|2)3

dx

over all functions v which are constrained in the same way. If the
function v is slowly varying, i.e., maxx∈[a,b] |v′(x)| � 1, this energy-
minimisation property is very similar to the result in Theorem 11.3.

11.5 Hermite cubic splines

In the previous section we took f ∈ C[a, b] and demanded that s be-
longed to C2[a, b]; here we shall strengthen our requirements on the
smoothness of the function that we wish to interpolate and assume that
f ∈ C1[a, b]; simultaneously, we shall relax the smoothness requirements
on the associated spline approximation s by demanding that s ∈ C1[a, b]
only.

Let K = {x0, . . . , xm} be a set of knots in the interval [a, b] with
a = x0 < x1 < · · · < xm = b and m ≥ 2. We define the Hermite cubic
spline as a function s ∈ C1[a, b] such that

� s(xi) = f(xi), s′(xi) = f ′(xi) for i = 0, 1, . . . ,m,
� s is a cubic polynomial on [xi−1, xi] for i = 1, 2, . . . ,m.

Writing the spline s on the interval [xi−1, xi] as

s(x) = c0 + c1(x − xi−1) + c2(x − xi−1)2 + c3(x − xi−1)3 ,

x ∈ [xi−1, xi] , (11.8)

1 See Carl de Boor: A Practical Guide to Splines, Revised Edition, Springer Applied
Mathematical Sciences, 27, Springer, New York, 2001.
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we find that c0 = f(xi−1), c1 = f ′(xi−1), and

c2 = 3
f(xi) − f(xi−1)

h2
i

− f ′(xi) + 2f ′(xi−1)
hi

,

(11.9)
c3 =

f ′(xi) + f ′(xi−1)
h2
i

− 2
f(xi) − f(xi−1)

h3
i

.

Note that the Hermite cubic spline only has a continuous first derivative
at the knots, and therefore it is not an interpolating cubic spline in the
sense of Section 11.4.

Unlike natural cubic splines, the coefficients of a Hermite cubic spline
on each subinterval can be written down explicitly without the need to
solve a tridiagonal system.

Concerning the size of the interpolation error, we have the following
result.

Theorem 11.4 Let f ∈ C4[a, b], and let s be the Hermite cubic spline
that interpolates f at the knots a = x0 < x1 < · · · < xm = b; then, the
following error bound holds:

‖f − s‖∞ ≤ 1
384

h4‖f iv‖∞ ,

where f iv = f (4) is the fourth derivative of f with respect to its argument,
x, h = maxi hi = maxi(xi − xi−1), and ‖ · ‖∞ denotes the ∞-norm on
the interval [a, b].

The proof is analogous to that of Theorem 11.1, except that Theorem
6.4 is used instead of Theorem 6.2.

Both the linear spline and the Hermite cubic spline are local approxi-
mations; the value of the spline at a point x between two knots xi−1 and
xi depends only on the values of the function and its derivative at these
two knots. On the other hand, the natural cubic interpolating spline is a
global approximation and, in this respect, it is more typical of a generic
spline: a change in just one of the values at a knot, f(xk), will alter the
right-hand side of the system of equations (11.7), so the values of all the
quantities σi will change. Thus, the spline will change throughout the
whole interval [x0, xm]. We conclude this section with an example.

Example 11.3 Figure 11.3 shows the Hermite cubic spline approxima-
tion to the function f : x �→ 1/(1 + x2), using four equally spaced knots
in the interval [0, 5].
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The accuracy of this approximation is in striking contrast to the La-
grange polynomial approximation of degree 10 in Figure 6.1. The ap-
proximation over [−5, 5], using seven equally spaced knots, is obviously
obtained by symmetry; here we show only half the range for clarity.
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Fig. 11.3. The function f : x �→ 1/(1 + x2) (full curve) and its Hermite cubic
spline approximation (dotted curve). The interval is [0, 5], and the knots are
at 0, 5

3
, 10

3
and 5.

As the error of this approximation is quite small, we show in Figure
11.4 graphs of the errors of three spline approximations, each using the
same four knots. Note that in the first interval, [0, 5

3 ], the maximum error
of the Hermite cubic spline is larger than that of the linear spline, but
on the other two intervals it is much less. Both of these two splines are
local approximations, as their values on any interval between two knots
depend only on information about the function at those two knots. The
natural cubic spline is a global approximation, as its value at any point
depends on the values of the function at all the knots; on the first interval
its error is much the same size as that of the Hermite cubic spline, but
on the other two intervals its error is affected by this global coupling,
and is a good deal bigger than that of the Hermite cubic spline. �

11.6 Basis functions for cubic splines

We have seen that the family of hat functions forms a basis for the linear
space of linear splines corresponding to a certain fixed set of knots; we
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Fig. 11.4. Errors of three spline approximations to f(x) = 1/(1 + x2): Her-
mite cubic (full curve), natural cubic (dotted curve) and linear spline (broken
curve). The interval is [0, 5], and the knots are at 0, 5

3
, 10

3
and 5.

shall now show how to construct a set of basis functions for cubic splines.
The basis functions for splines are usually known as B-splines. Thus,
the basis-splines constructed in Section 11.2 are referred to as linear
B-splines. Here we shall be concerned with the construction of cubic
B-splines. To simplify the notation we shall assume in this section that
the knots are equally spaced, so that

xk = kh , k = 0, 1, . . . , n + 1 ,

with h > 0.
We begin by introducing the idea of the positive part of a function.

Definition 11.3 Suppose that n ≥ 1. The positive part of the function
x �→ (x − a)n is the function x �→ (x − a)n+ defined by

(x − a)n+ =
{

(x − a)n , x ≥ a ,

0 , x < a .

Clearly the function x �→ (x−xk)n+ is a spline of degree n; at the knot
xk the derivatives of order up to n − 1 are zero, but the derivative of
order n is not continuous at x = xk.

Figure 11.5 shows the graphs of the functions x �→ x+ and x �→ x3
+

on the interval [−1, 1].
We shall also need the following result.
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Fig. 11.5. The graph of the function x �→ (x)n+, for x in the interval [−1, 1],
with n = 1 (left) and n = 3 (right).

Lemma 11.1 Suppose that P is a polynomial in x of degree n ≥ 1.
Then, for each r = 1, . . . , n, the function Q(r) defined by

Q(r)(x) =
r∑
k=0

(−1)k
(

r

k

)
P (x − kh)

is a polynomial of degree n − r and Q(n+1)(x) ≡ 0, x ∈ R.

Proof It is easy to see that Q(1)(x) = P (x) − P (x − h), and therefore
Q(1) is a polynomial of degree n− 1. Suppose now that, for some r > 0,
Q(r) is a polynomial in x of degree n−r; then, x �→ Q(r)(x)−Q(r)(x−h)
is a polynomial of degree n − r − 1. But

Q(r)(x) − Q(r)(x − h)

=
r∑
k=0

(−1)k
(

r

k

)
[P (x − kh) − P (x − (k + 1)h)]

= P (x) + (−1)r+1P (x − (r + 1)h)

+
r∑
k=1

(−1)k
[(

r

k

)
+
(

r

k − 1

)]
P (x − kh)

=
r+1∑
k=0

(−1)k
(

r + 1
k

)
P (x − kh)

= Q(r+1)(x) , (11.10)
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from the standard properties of binomial coefficients. Hence Q(r+1) is a
polynomial in x of degree n− r− 1, and the result follows by induction.
Finally, this shows that Q(n) is a polynomial of degree 0, and is there-
fore constant on R. Thus, by the same argument, Q(n+1) is identically
0 on R.

Theorem 11.5 For each n ≥ 1, the function S(n) defined by

S(n)(x) =
n+1∑
k=0

(−1)k
(

n + 1
k

)
(x − kh)n+

is a spline of degree n with equally spaced knots kh, k = 0, 1, . . . , n + 1.
It has a continuous derivative of order n− 1 and is identically 0 outside
the interval (0, (n + 1)h).

Proof The function S(n) is clearly a spline as stated, and S(n)(x) is
identically 0 for x ≤ 0. When x ≥ (n + 1)h the arguments x − kh,
k = 0, 1, . . . , n + 1, of the positive parts are all nonnegative, so that

S(n)(x) =
n+1∑
k=0

(−1)k
(

n + 1
k

)
(x − kh)n ,

and this is identically zero by Lemma 11.1.

Taking n = 1 we find that

S(1)(x) = x+ − 2(x − h)+ + (x − 2h)+ .

After normalisation by 1/h so as to have a maximum value of 1, and
shifting x = 0 to x = xk−1, this yields a representation of the linear hat
function ϕk from (11.4) in the form

ϕk(x) =
1
h
S(1)(x − xk−1) ,

which, for 1 ≤ k ≤ n, is nonzero over two consecutive intervals: (xk−1, xk]
and [xk, xk+1).

In the same way we obtain a basis function for the cubic spline by
taking n = 3:

S(3)(x) = x3
+−4(x − h)3

++6(x − 2h)3
+−4(x − 3h)3

++(x − 4h)3
+ .

Normalising so as to have a maximum value of 1 and shifting x = 0 to
x = xk−2, we get

ψk(x) =
1

4h3
S(3)(x − xk−2) .
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Fig. 11.6. Normalised cubic B-spline, ψk(x), 2 ≤ k ≤ n− 1.

For 2 ≤ k ≤ n−1, this function is nonzero over four consecutive intervals
(xk−2, xk−1], [xk−1, xk], [xk, xk+1] and [xk+1, xk+2), and is illustrated in
Figure 11.6.

We see that both ϕk and ψk are nonnegative for all x; this is true for
a spline basis function of any degree n, n ≥ 1, constructed in this way,
but we shall not prove it here (see Exercise 6).

For a finite set of knots a = x0 < x1 < · · · < xn+1 = b on the bounded
and closed interval [a, b] the normalised linear basis splines x �→ ϕ0(x)
and x �→ ϕn+1(x) are considered only for x in [a, b], so as to avoid
reference to nonexisting knots (such as x−1 or xn+2) that lie outside
[a, b]. A similar comment applies to the normalised cubic basis splines
ψ0, ψ1, ψn and ψn+1.

11.7 Notes

There are many excellent texts covering the theory of piecewise polyno-
mial approximation by splines. For a detailed survey of key results we
refer to Chapters 18–24 of

➧ M.J.D. Powell, Approximation Theory and Methods, Cambridge
University Press, Cambridge, 1996.

You may have noticed that we have given bounds on the error in linear
spline approximation in Theorem 11.1, and in Hermite cubic spline ap-
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proximation in Theorem 11.4, but not for the natural cubic spline. The
analysis of the error in the natural cubic spline approximation is quite
complicated; Powell gives full details in his book.

The following are classical texts on the theory of splines.

➧ J.H. Ahlberg, E.N. Nilson, and J.L. Walsh, The Theory of
Splines and Their Applications, Mathematics in Science and Engi-
neering, 38, Academic Press, New York, 1967.

➧ C. de Boor, A Practical Guide to Splines, Revised Edition, Springer
Applied Mathematical Sciences, 27, Springer, New York, 2001.

➧ Larry L. Schumaker, Spline Functions: Basic Theory, John Wiley
& Sons, New York, 1981.

The variational characterisations of splines stated in Sections 11.1 and
11.3 stem from the work of J.C. Holladay, Smoothest curve approxima-
tion, Math. Comput. 11, 233–243, 1957.

Our definition of the Sobolev space Hk(a, b) in Section 11.1, based on
the concept of absolute continuity, is specific to functions of a single vari-
able. More generally, for functions of several real variables one needs to
invoke the theory of weak differentiability or the theory of distributions
to give a rigorous definition of the Sobolev space Hk(Ω) with Ω ⊂ R

n;
alternatively, one can define Hk(Ω) by completion of the set of smooth
functions in a suitable norm. For the sake of simplicity of exposition we
have chosen to avoid such general approaches.

Exercises

11.1 An interpolating spline of degree n is required to have con-
tinuous derivatives of order up to and including n − 1 at the
knots. How many additional conditions are required to specify
the spline uniquely?

11.2 (i) Suppose that f is a polynomial of degree 1. Show that the
linear spline sL which interpolates f at the knots xi for i =
0, 1, . . . ,m is identical to f , so that sL ≡ f .
(ii) Suppose that f is a polynomial of degree 3. Show that the
Hermite cubic spline sH which interpolates f at the knots xi,
i = 0, 1, . . . ,m, is identical to f , so that sH ≡ f .
(iii) Suppose that f is a polynomial of degree 3. Show that
the natural cubic spline s2 which interpolates f at the knots xi,
i = 0, 1, . . . ,m, is not in general identical to f .
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11.3 Suppose that the natural cubic spline s2 interpolates the func-
tion f : x �→ x3 on the interval [0, 1], the knots being equally
spaced, so that xi = ih, i = 0, 1, . . . ,m, with h = 1/m, m ≥ 2.
Write down the equations which determine the quantities σi. If
the two additional conditions are σ0 = σm = 0, show that these
equations are not satisfied by σi = f ′′(xi), i = 1, . . . ,m − 1,
so that s2 and f are not identical. If, however, these two addi-
tional conditions are replaced by σ0 = f ′′(0), σm = f ′′(1), show
that σi = f ′′(xi), i = 0, 1, . . . ,m, and deduce that s2 and f are
identical.

11.4 A linear spline on the interval [0, 1] is expressed in terms of the
basis functions as

s(x) =
m∑
k=0

αkϕk(x) .

Instead of being required to interpolate the function f at the
knots, the spline s is required to minimise ‖f − s‖2. Show that
the coefficients αk satisfy the system of equations

Aα = b ,

where the elements of the matrix A are

Aij =
∫ 1

0

ϕj(x)ϕi(x)dx

and the elements of b are

bi =
∫ 1

0

f(x)ϕi(x)dx .

Now suppose that the knots are equally spaced, so that xk =
kh, k = 0, 1, . . . ,m, where h = 1/m, m ≥ 2. Show that the
matrix A is tridiagonal, with Aii = 2

3h for i = 1, . . . ,m− 1, and
determine the other nonzero elements of A. Show also that A

has the properties required for the use of the Thomas algorithm
described in Section 3.3.

11.5 In the notation of Exercise 4, suppose that f(x) = x. Verify
that the system of equations is satisfied by αk = kh, so that
s = f .

Now suppose that f(x) = x2. Verify that the equations are
satisfied by αk = (kh)2 + Ch2, where C is a constant to be
determined. Deduce that s(xk) = f(xk) + Ch2.
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11.6 In the notation of Theorem 11.5, the spline basis function S(n)

of degree n is defined by

S(n)(x) =
n+1∑
k=0

(−1)k
(

n + 1
k

)
(x − kh)n+ .

Explain why, for any value of a,

(x − a)n+(x − a) = (x − a)n+1
+ .

Show that

xS(n)(x) + [(n + 2)h − x]S(n)(x − h) = S(n+1)(x) .

Hence show by induction that S(n)(x) ≥ 0 for all x.
11.7 Use the result of Exercise 6 to show by induction that each basis

function S(n) is symmetric; that is,

S(n)(p + x) = S(n)(p − x)

for all x, where p = 1
2 (n + 1)h.
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Initial value problems for ODEs

12.1 Introduction

Ordinary differential equations frequently occur in mathematical models
that arise in many branches of science, engineering and economics. Un-
fortunately it is seldom that these equations have solutions which can be
expressed in closed form, so it is common to seek approximate solutions
by means of numerical methods. Nowadays this can usually be achieved
very inexpensively to high accuracy and with a reliable bound on the er-
ror between the analytical solution and its numerical approximation. In
this section we shall be concerned with the construction and the analysis
of numerical methods for first-order differential equations of the form

y′ = f(x, y) (12.1)

for the real-valued function y of the real variable x, where y′ ≡ dy
dx

and f is a given real-valued function of two real variables. In order to
select a particular integral from the infinite family of solution curves
that constitute the general solution to (12.1), the differential equation
will be considered in tandem with an initial condition: given two real
numbers x0 and y0, we seek a solution to (12.1) for x > x0 such that

y(x0) = y0 . (12.2)

The differential equation (12.1) together with the initial condition (12.2)
is called an initial value problem.

If you believe that any initial value problem of the form (12.1), (12.2)
possesses a unique solution, take a look at the following example.

310
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Example 12.1 Consider the differential equation y′ = |y|α, subject to
the initial condition y(0) = 0, where α is a fixed real number, α ∈ (0, 1).

It is a simple matter to verify that, for any nonnegative real number c,

yc(x) =

{
(1 − α)

1
1−α (x − c)

1
1−α , c ≤ x < ∞ ,

0 , 0 ≤ x ≤ c ,

is a solution to the initial value problem on the interval [0,∞). Conse-
quently the existence of the solution is ensured, but not its uniqueness;
in fact, the initial value problem has an infinite family of solutions {yc},
parametrised by c ≥ 0.

We note in passing that in contrast with the case of α ∈ (0, 1), when
α ≥ 1, the initial value problem y′ = |y|α, y(0) = 0 has the unique
solution y(x) ≡ 0. �

Example 12.1 indicates that the function f has to obey a certain
growth condition with respect to its second argument so as to ensure
that (12.1), (12.2) has a unique solution. The precise hypotheses on
f guaranteeing the existence of a unique solution to the initial value
problem (12.1), (12.2) are stated in the next theorem.

Theorem 12.1 (Picard’s Theorem1) Suppose that the real-valued
function (x, y) �→ f(x, y) is continuous in the rectangular region D de-
fined by x0 ≤ x ≤ XM , y0 − C ≤ y ≤ y0 + C; that |f(x, y0)| ≤ K when
x0 ≤ x ≤ XM ; and that f satisfies the Lipschitz condition: there exists
L > 0 such that

|f(x, u) − f(x, v)| ≤ L|u − v| for all (x, u) ∈ D , (x, v) ∈ D .

Assume further that

C ≥ K

L

(
eL(XM−x0) − 1

)
. (12.3)

Then, there exists a unique function y ∈ C1[x0, XM ] such that y(x0) = y0

and y′ = f(x, y) for x ∈ [x0, XM ]; moreover,

|y(x) − y0| ≤ C , x0 ≤ x ≤ XM .

1 Charles Emile Picard (24 July 1856, Paris, France – 11 December 1941, Paris,
France). Although as a child he was a brilliant pupil, Picard disliked mathemat-
ics and only became interested in the subject during the vacation following his
secondary studies. He was appointed to the chair of differential calculus at the
Sorbonne in Paris at the age of 29 but could only take up his position a year later,
as university regulations prevented anyone below the age of 30 holding a chair.
Picard made important contributions to mathematical analysis and the theory of
differential equations.
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Proof We define a sequence of functions (yn)∞n=0 by

y0(x) ≡ y0 ,

yn(x) = y0 +
∫ x

x0

f(s, yn−1(s))ds , n = 1, 2, . . . . (12.4)

Since f is continuous on D, it is clear that each function yn is continuous
on [x0, XM ]. Further, since

yn+1(x) = y0 +
∫ x

x0

f(s, yn(s))ds ,

it follows by subtraction that

yn+1(x) − yn(x) =
∫ x

x0

[f(s, yn(s)) − f(s, yn−1(s))] ds . (12.5)

We now proceed by induction, and assume that, for some positive
value of n,

|yn(x) − yn−1(x)| ≤ K

L

[L(x − x0)]n

n!
, x0 ≤ x ≤ XM , (12.6)

and that

|yk(x) − y0| ≤ K

L

k∑
j=1

[L(x − x0)]j

j!
,

x0 ≤ x ≤ XM , k = 1, . . . , n . (12.7)

Trivially, the hypotheses of the theorem and (12.4) imply that (12.6)
and (12.7) hold for n = 1.

Now, (12.7) and (12.3) yield that

|yk(x) − y0| ≤ K

L

(
eL(XM−x0) − 1

)
≤ C ,

x0 ≤ x ≤ XM , k = 1, . . . , n .

Therefore (x, yn−1(x)) ∈ D and (x, yn(x)) ∈ D for all x ∈ [x0, XM ].
Hence, using (12.5), the Lipschitz condition and (12.6),

|yn+1(x) − yn(x)| ≤ L

∫ x

x0

K

L

[L(s − x0)]n

n!
ds

=
K

L

[L(x − x0)]n+1

(n + 1)!
, (12.8)
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for all x ∈ [x0, XM ]. Moreover, using (12.8) and (12.7),

|yn+1(x) − y0| ≤ |yn+1(x) − yn(x)| + |yn(x) − y0|

≤ K

L

[L(x − x0)]n+1

(n + 1)!
+

K

L

n∑
j=1

[L(x − x0)]j

j!

=
K

L

n+1∑
j=1

[L(x − x0)]j+1

(j + 1)!
, (12.9)

for all x ∈ [x0, XM ]. Thus, (12.6) and (12.7) hold with n replaced by
n + 1, and hence, by induction, they hold for all positive integers n.

Since the infinite series
∑∞
j=1(c

j/j!) converges (to ec−1) for any value
of c ∈ R, and for c = L(XM − x0) in particular, it follows from (12.6)
that the infinite series

∞∑
j=1

[yj(x) − yj−1(x)]

converges absolutely and uniformly for x ∈ [x0, XM ]. However,

y0 +
n∑
j=1

[yj(x) − yj−1(x)] = yn(x) ,

showing that the sequence of continuous functions (yn) converges to a
limit, uniformly on [x0, XM ], and hence that the limit itself is a contin-
uous function. Calling this limit y, we see from (12.4) that

y(x) = lim
n→∞ yn+1(x)

= y0 + lim
n→∞

∫ x

x0

f(s, yn(s))ds ,

= y0 +
∫ x

x0

lim
n→∞ f(s, yn(s))ds ,

= y0 +
∫ x

x0

f(s, y(s))ds , (12.10)

where we used the uniform convergence of the sequence of functions (yn)
in the transition from line two to line three to interchange the order of
the limit process and integration, and the continuity of the function f

in the transition from line three to line four. As s �→ f(s, y(s)) is a
continuous function of s on the interval [x0, XM ], its integral over the
interval [x0, x] is a continuously differentiable function of x. Hence, by
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(12.10), y is a continuously differentiable function of x on [x0, XM ]; i.e.,
y ∈ C1[x0, XM ]. On differentiating (12.10) we deduce that

y′ = f(x, y) ,

as required; also y(x0) = y0. We have already seen that (x, yn(x)) ∈ D

when x0 ≤ x ≤ XM ; as D is a closed set in R
2, on letting n → ∞ it

then follows that also (x, y(x)) ∈ D when x0 ≤ x ≤ XM .
To show that the solution of the initial value problem is unique, sup-

pose, if possible, that there are two different solutions y and z. Then,
by subtraction,

y(x) − z(x) =
∫ x

x0

(f(s, y(s)) − f(s, z(s))) ds , x ∈ [x0, XM ] ,

from which it follows that

|y(x) − z(x)| ≤ L

∫ x

x0

|y(s) − z(s)|ds (12.11)

for all x ∈ [x0, XM ]. Suppose that m is the maximum value of the
expression |y(x) − z(x)| for x0 ≤ x ≤ XM , and that m > 0. Then,

|y(x) − z(x)| ≤ mL(x − x0) , x0 ≤ x ≤ XM .

Substituting this inequality into the right-hand side of (12.11) we find

|y(x) − z(x)| ≤ L2m

∫ x

x0

(s − x0) ds = m
[L(x − x0)]2

2!
.

Proceeding in a similar manner, it is easy to show by induction that

|y(x) − z(x)| ≤ m
[L(x − x0)]k

k!
, k = 1, 2, . . . ,

for all x ∈ [x0, XM ]. However, the right-hand side in the last inequality
is bounded above by m[L(XM −x0)]k/k! for all x ∈ [x0, XM ], which can
be made arbitrarily small by choosing k sufficiently large. Therefore,
|y(x) − z(x)| must be zero for all x ∈ [x0, XM ]. Hence the solutions y

and z are identical.

In an application of this theorem it is necessary to choose a value of
the constant C in Picard’s Theorem so that the various hypotheses are
satisfied, in particular (12.3); it is not difficult to see that if ∂f/∂y is
continuous in a neighbourhood of (x0, y0) the conditions will be satisfied
if XM − x0 is sufficiently small.
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As a very simple example, consider the linear equation

y′ = py + q , (12.12)

where p and q are constants. Then, L = |p|, independently of C, and
K = |py0| + |q|. Hence, for any interval [x0, XM ], the conditions are
satisfied by choosing C sufficiently large; therefore, the initial value
problem has a unique continuously differentiable solution, defined for
all x ∈ [x0,∞).

Now, consider another example

y′ = y2 , y(0) = 1 .

Here for any interval [0, XM ] we have K = 1. Choosing any positive
value of C we find that

|u2 − v2| = |u + v| |u − v| ≤ L|u − v| ∀u, v ∈ R ,

where L = 2(1 + C). We therefore now require the condition

C ≥ 1
2(1 + C)

(
e2(1+C)XM − 1

)
.

This is satisfied if

XM ≤ F (C) ≡ 1
2(1 + C)

ln(1 + 2C + 2C2) ,

where ln means loge. A sketch of the graph of the function F against C

shows that F takes its maximum value near C = 1.714, and this gives
the condition XM ≤ 0.43 (see Figure 12.1).

Thus, we are unable to prove the existence of the solution over the
infinite interval [0,∞). This is correct, of course, as the unique solution
of the initial value problem is

y(x) =
1

1 − x
, 0 ≤ x < 1 ,

and this is not continuous, let alone continuously differentiable, on any
interval [0, XM ] with XM ≥ 1. The conditions of Picard’s Theorem,
which are sufficient but not necessary for the existence and the unique-
ness of the solution, have given a rather more restrictive bound on the
size of the interval over which the solution exists.

The method of proof of Picard’s Theorem also suggests a possible
technique for constructing approximations to the solution, by determin-
ing the functions yn from (12.4). In practice it may be impossible, or
very difficult, to evaluate the necessary integrals in closed form. We
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C

Fig. 12.1. Graph of the function C �→ F (C) on the interval [0, 4]; F achieves
its maximum value near C = 1.714 and F (C) ≤ 0.43 for all C ≥ 0.

leave it as an exercise (see Exercise 3) to show that for the simple linear
equation (12.12), with initial condition y(0) = 1, the function yn is the
same as the approximation obtained from the exact solution by expand-
ing the exponential function as a power series and retaining the terms
up to the one involving xn.

In the rest of this chapter we shall consider step-by-step numerical
methods for the approximate solution of the initial value problem (12.1),
(12.2). We shall suppose throughout that the function f satisfies the
conditions of Picard’s Theorem. Suppose that the initial value problem
(12.1), (12.2) is to be solved on the interval [x0, XM ]. We divide this
interval by the mesh points xn = x0 + nh, n = 0, 1, . . . , N , where
h = (XM −x0)/N and N is a positive integer. The positive real number
h is called the step size or mesh size. For each n we seek a numerical
approximation yn to y(xn), the value of the analytical solution at the
mesh point xn; these values yn are calculated in succession, for n =
1, 2, . . . , N.
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12.2 One-step methods

A one-step method expresses yn+1 in terms of the previous value yn;
later on we shall consider k-step methods, where yn+1 is expressed in
terms of the k previous values yn−k+1, . . . , yn, where k ≥ 2. The simplest
example of a one-step method for the numerical solution of the initial
value problem (12.1), (12.2) is Euler’s method.
Euler’s method. Given that y(x0) = y0, let us suppose that we have

already calculated yn, up to some n, 0 ≤ n ≤ N − 1, N ≥ 1; we define

yn+1 = yn + hf(xn, yn) .

Thus, taking in succession n = 0, 1, . . . , N − 1, one step at a time, the
approximate values yn at the mesh points xn can be easily obtained.
This numerical method is known as Euler’s method.

In order to motivate the definition of Euler’s method, let us observe
that on expanding y(xn+1) = y(xn + h) into a Taylor series about xn,
retaining only the first two terms, and writing y′(xn) = f(xn, y(xn)), we
have that

y(xn + h) = y(xn) + hf(xn, y(xn)) + O(h2) .

After replacing y(xn) and y(xn+h) by their numerical approximations,
denoted by yn and yn+1, respectively, and discarding the O(h2) term,
we arrive at Euler’s method.

More generally, a one-step method may be written in the form

yn+1 = yn + hΦ(xn, yn;h) , n = 0, 1, . . . , N − 1 , y(x0) = y0 ,

(12.13)
where Φ( · , · ; · ) is a continuous function of its variables. For example,
in the case of Euler’s method, Φ(xn, yn;h) = f(xn, yn). More intricate
examples of one-step methods will be discussed below.

In order to assess the accuracy of the numerical method (12.13), we
define the global error, en, by

en = y(xn) − yn .

We also need the concept of truncation error, Tn, defined by

Tn =
y(xn+1) − y(xn)

h
− Φ(xn, y(xn);h) . (12.14)

The next theorem provides a bound on the magnitude of the global
error in terms of the truncation error.
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Theorem 12.2 Consider the general one-step method (12.13) where, in
addition to being a continuous function of its arguments, Φ is assumed
to satisfy a Lipschitz condition with respect to its second argument, that
is, there exists a positive constant LΦ such that, for 0 ≤ h ≤ h0 and for
all (x, u) and (x, v) in the rectangle

D = {(x, y): x0 ≤ x ≤ XM , |y − y0| ≤ C} ,

we have that

|Φ(x, u;h) − Φ(x, v;h)| ≤ LΦ|u − v| . (12.15)

Then, assuming that |yn − y0| ≤ C, n = 1, 2, . . . , N , it follows that

|en| ≤
T

LΦ

(
eLΦ(xn−x0) − 1

)
, n = 0, 1, . . . , N , (12.16)

where T = max0≤n≤N−1 |Tn|.

Proof Rewriting (12.14) as

y(xn+1) = y(xn) + hΦ(xn, y(xn);h) + hTn

and subtracting (12.13) from this, we obtain

en+1 = en + h[Φ(xn, y(xn);h) − Φ(xn, yn;h)] + hTn .

Then, since (xn, y(xn)) and (xn, yn) belong to D, the Lipschitz condition
(12.15) implies that

|en+1| ≤ |en| + hLΦ|en| + h|Tn| , n = 0, 1, . . . , N − 1 . (12.17)

That is,

|en+1| ≤ (1 + hLΦ)|en| + h|Tn| , n = 0, 1, . . . , N − 1 .

It easily follows by induction that

|en| ≤
T

LΦ
[(1 + hLΦ)n − 1] , n = 0, 1, . . . , N,

since e0 = 0. Observing that 1 + hLΦ ≤ exp(hLΦ) gives (12.16).

Let us apply this general result in order to obtain a bound on the
global error in Euler’s method. The truncation error for Euler’s method
is given by

Tn =
y(xn+1) − y(xn)

h
− f(xn, y(xn))

=
y(xn+1) − y(xn)

h
− y′(xn) . (12.18)
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Assuming that y ∈ C2[x0, XM ], i.e., that y is a twice continuously dif-
ferentiable function of x on [x0, XM ], and expanding y(xn+1) about the
point xn into a Taylor series with remainder (see Theorem A.4), we have
that

y(xn+1) = y(xn) + hy′(xn) +
h2

2!
y′′(ξn) , xn < ξn < xn+1 .

Substituting this expansion into (12.18) gives

Tn =
1
2
hy′′(ξn) .

Let M2 = maxζ∈[x0,XM ] |y′′(ζ)|. Then, |Tn| ≤ T , n = 0, 1, . . . , N − 1,
where T = 1

2hM2. Inserting this into (12.16) and noting that for Euler’s
method Φ(xn, yn;h) ≡ f(xn, yn) and therefore LΦ = L where L is the
Lipschitz constant for f , we have that

|en| ≤
1
2
M2

[
eL(xn−x0) − 1

L

]
h , n = 0, 1, . . . , N . (12.19)

Let us highlight the practical relevance of our error analysis by focus-
ing on a particular example.

Example 12.2 Let us consider the initial value problem y′ = tan−1 y,
y(0) = y0, where y0 is a given real number. In order to find an upper
bound on the global error en = y(xn)−yn, where yn is the Euler approx-
imation to y(xn), we need to determine the constants L and M2 in the
inequality (12.19).

Here f(x, y) = tan−1 y; so, by the Mean Value Theorem (Theorem A.3),

|f(x, u) − f(x, v)| =
∣∣∣∣∂f∂y (x, η) (u − v)

∣∣∣∣ =
∣∣∣∣∂f∂y (x, η)

∣∣∣∣ |u − v| ,

where η lies between u and v. In our case∣∣∣∣∂f∂y (x, y)
∣∣∣∣ = |(1 + y2)−1| ≤ 1 ,

and therefore L = 1. To find M2 we need to obtain a bound on |y′′| (with-
out actually solving the initial value problem!). This is easily achieved
by differentiating both sides of the differential equation with respect to
the variable x:

y′′ =
d
dx

(tan−1 y) = (1 + y2)−1 dy
dx

= (1 + y2)−1 tan−1 y .
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Therefore |y′′(x)| ≤ M2 = 1
2π. Inserting the values of L and M2 into

(12.19) and noting that x0 = 0, we have

|en| ≤ 1
4π (exn − 1)h , n = 0, 1, . . . , N .

Thus, given a tolerance TOL, specified beforehand, we can ensure that
the error between the (unknown) analytical solution and its numerical
approximation does not exceed this tolerance by choosing a positive step
size h such that

h ≤ 4
π(eXM − 1)

TOL .

For such h we shall have |y(xn) − yn| = |en| ≤ TOL, for n = 0, 1, . . . , N ,
as required. Thus, at least in principle, we can calculate the numerical
solution to arbitrarily high accuracy by choosing a sufficiently small step
size h.

A numerical experiment shows that this error estimate is rather pes-
simistic. Taking, for example, y0 = 1 and XM = 1, our bound implies
that the tolerance TOL = 0.01 will be achieved with h ≤ 0.0074; hence,
it would appear that we need N ≥ 135. In fact, using N = 27 gives
a result from Euler’s method which is just within this tolerance, so the
error estimate has predicted the use of a step size which is five times
smaller than is actually required. �
Example 12.3 As a more typical practical example, consider the prob-
lem

y′ = y2 + g(x) , y(0) = 2 , (12.20)

where

g(x) =
x4 − 6x3 + 12x2 − 14x + 9

(1 + x)2
,

is so chosen that the solution is known, and is

y(x) =
(1 − x)(2 − x)

1 + x
.

The results of some numerical calculations on the interval x ∈ [0, 1.6] are
shown in Figure 12.2. They use step sizes 0.2, 0.1 and 0.05, and show
how halving the step size gives a reduction of the error also by a factor
of roughly 2, in agreement with the error bound (12.19). �
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Fig. 12.2. Euler’s method for the solution of (12.20). The exact solution (solid
curve) and three sets of results are shown (large, medium and small dots),
using respectively 8 steps of size 0.2, 16 steps of size 0.1 and 32 steps of size
0.05 on the interval [0, 1.6].

12.3 Consistency and convergence

Returning to the general one-step method (12.13), we consider the choice
of the function Φ. Theorem 12.2 suggests that if the truncation error
‘approaches zero’ as h → 0, then the global error ‘converges to zero’
also. This observation motivates the following definition.

Definition 12.1 The numerical method (12.13) is consistent with the
differential equation (12.1) if the truncation error, defined by (12.14), is
such that for any ε > 0 there exists a positive h(ε) for which |Tn| < ε

for 0 < h < h(ε) and any pair of points (xn, y(xn)), (xn+1, y(xn+1)) on
any solution curve in D.

For the general one-step method (12.13) we have assumed that the
function Φ( · , · ; · ) is continuous; since y′ is also a continuous function
on [x0, XM ] it follows from (12.14) that, in the limit of

h → 0 and n → ∞, with limn→∞ xn = x ∈ [x0, XM ] ,

we have

lim
n→∞Tn = y′(x) − Φ(x, y(x); 0) .

In this limit h tends to zero and n tends to infinity in such a way that xn
tends to a limit point x which lies in the interval [x0, XM ]. This implies
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that the one-step method (12.13) is consistent if, and only if,

Φ(x, y; 0) ≡ f(x, y) . (12.21)

This condition is sometimes taken as the definition of consistency. We
shall henceforth always assume that (12.21) holds.

Now, we are ready to state a convergence theorem for the general
one-step method (12.13).

Theorem 12.3 Suppose that the initial value problem (12.1), (12.2) sat-
isfies the conditions of Picard’s Theorem, and also that its approximation
generated from (12.13) when h ≤ h0 lies in the region D. Assume fur-
ther that the function Φ( · , · ; · ) is continuous on D×[0, h0], and satisfies
the consistency condition (12.21) and the Lipschitz condition

|Φ(x, u;h) − Φ(x, v;h)| ≤ LΦ|u − v| on D × [0, h0] . (12.22)

Then, if successive approximation sequences (yn), generated by using the
mesh points xn = x0 + nh, n = 1, 2, . . . , N , are obtained from (12.13)
with successively smaller values of h, each h less than h0, we have con-
vergence of the numerical solution to the solution of the initial value
problem in the sense that

lim
n→∞ yn = y(x) as xn → x ∈ [x0, XM ] when h → 0 and n → ∞ .

Proof Suppose that h = (XM−x0)/N , where N is a positive integer. We
shall assume that N is sufficiently large so that h ≤ h0. Since y(x0) = y0

and therefore e0 = 0, Theorem 12.2 implies that

|y(xn) − yn| ≤
(

eLΦ(XM−x0) − 1
LΦ

)
max

0≤m≤n−1
|Tm| , n = 1, 2, . . . , N .

(12.23)
From the consistency condition (12.21) we have

Tn =
(
y(xn+1) − y(xn)

h
− f(xn, y(xn))

)
+ (Φ(xn, y(xn); 0) − Φ(xn, y(xn);h)) . (12.24)

According to the Mean Value Theorem, Theorem A.3, the expression
in the first bracket is equal to y′(ξn) − y′(xn), where ξn ∈ [xn, xn+1].
By Picard’s Theorem, y′ is continuous on the closed interval [x0, XM ];
therefore, it is uniformly continuous on this interval. Hence, for each
ε > 0 there exists h1(ε) such that

|y′(ξn) − y′(xn)| ≤ 1
2ε for h < h1(ε) , n = 0, 1, . . . , N − 1 .
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Also, since Φ( · , · ; · ) is a continuous function on the closed set D× [0, h0]
and is, therefore, uniformly continuous on D× [0, h0], there exists h2(ε)
such that

|Φ(xn, y(xn); 0) − Φ(xn, y(xn);h)| ≤ 1
2ε

for h < h2(ε), n = 0, 1, . . . , N−1. On defining h(ε) = min{h1(ε), h2(ε)},
we then have that

|Tn| ≤ ε for h < h(ε) , n = 0, 1, . . . , N − 1 .

Inserting this into (12.23) we deduce that

|y(x) − yn| ≤ |y(x) − y(xn)| + |y(xn) − yn|

≤ |y(x) − y(xn)| + ε
eLΦ(XM−x0) − 1

LΦ
. (12.25)

Now, in the limit of h → 0, n → ∞ with xn → x ∈ [x0, XM ], we have
limn→∞ y(xn) = y(x), since y is a continuous function on [x0, XM ].
Further, the second term on the right-hand side of (12.25) can be made
arbitrarily small, independently of h and n, by letting ε → 0. Therefore,
in the limit of h → 0, n → ∞ with xn → x ∈ [x0, XM ], we have that
limn→∞ yn = y(x), as stated.

We saw earlier that for Euler’s method the magnitude of the trunca-
tion error Tn is bounded above by a constant multiple of the step size
h, that is,

|Tn| ≤ Kh for 0 < h ≤ h0 ,

where K is a positive constant, independent of h. However, there are
other one-step methods (a class of which, called Runge–Kutta1 methods,
will be considered below) for which we can do better. Thus, in order to
quantify the asymptotic rate of decay of the truncation error as the step
size h converges to 0, we introduce the following definition.

Definition 12.2 The numerical method (12.13) is said to have order
of accuracy p, if p is the largest positive integer such that, for any suf-
ficiently smooth solution curve (x, y(x)) in D of the initial value problem
(12.1), (12.2), there exist constants K and h0 such that

|Tn| ≤ Khp for 0 < h ≤ h0

1 After Carle David Tolmé Runge (30 August 1856, Bremen, Germany – 3 Jan-
uary 1927, Göttingen, Germany) and Martin Wilhelm Kutta (3 November 1867,
Pitschen, Upper Silesia, Prussia, North Germany (now Byczyna, Poland) – 25
December 1944, Fürstenfeldbruck, Germany).
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for any pair of points (xn, y(xn)), (xn+1, y(xn+1)) on the solution curve.

12.4 An implicit one-step method

A one-step method with second-order accuracy is the trapezium rule
method

yn+1 = yn + h
2 [f(xn, yn) + f(xn+1, yn+1)] . (12.26)

This method is easily motivated by writing

y(xn+1) − y(xn) =
∫ xn+1

xn

y′(x) dx ,

and approximating the integral by the trapezium rule. Since the right-
hand side involves the integral of the function x �→ y′(x) = f(x, y(x))
we see at once from (7.6) that the truncation error

Tn =
y(xn+1) − y(xn)

h
− 1

2 [f(xn, y(xn)) + f(xn+1, y(xn+1))]

of the trapezium rule method satisfies the bound

|Tn| ≤ 1
12h

2M3 , where M3 = maxx∈[x0,XM ] |y′′′(x)| . (12.27)

The important difference between this method and Euler’s method
is that the value yn+1 appears on both sides of (12.26). To calculate
yn+1 from the known yn therefore requires the solution of an equation,
which will usually be nonlinear. This additional complication means an
increase in the amount of computation required, but not usually a very
large increase. The equation (12.26) is easily solved for yn+1 by Newton’s
method, assuming that the derivative ∂f/∂y can be calculated quickly;
as a starting point for the Newton iteration the obvious estimate

yn + hf(xn, yn) ,

will usually be close, and a couple of iterations will then suffice.
Methods of this type, which require the solution of an equation to

determine the new value yn+1, are known as implicit methods.
Writing the trapezium rule method in the standard form (12.13) we

see that

hΦ(xn, yn;h) = h
2 [f(xn, yn) + f(xn+1, yn+1)]

= h
2 [f(xn, yn) + f(xn+1, yn + hΦ(xn, yn;h)] .

(12.28)

Hence, the function Φ is also defined in an implicit form.
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In order to employ Theorem 12.2 to estimate the error in the trapez-
ium rule method we need a value for the Lipschitz constant LΦ. From
(12.28) we find that

|Φ(xn, u;h) − Φ(xn, v;h)| = 1
2 |f(xn, u) − f(xn + h, u + hΦ(xn, u;h))

−f(xn, v) − f(xn + h, v + hΦ(xn, v;h))| .

Hence,

|Φ(xn, u;h) − Φ(xn, v;h)|
≤ 1

2 |f(xn, u) − f(xn, v)|
+1

2 |f(xn + h, u + hΦ(xn, u;h)) − f(xn + h, v + hΦ(xn, v;h))|
≤ 1

2Lf |u − v|
+ 1

2Lf |u + hΦ(xn, u;h) − v − hΦ(xn, v;h)|
≤ 1

2Lf |u − v| + 1
2Lf |u − v| + 1

2Lfh|Φ(xn, u;h) − Φ(xn, v;h)| .

This shows that(
1 − 1

2hLf
)
|Φ(xn, u;h) − Φ(xn, v;h)| ≤ Lf |u − v| ,

and, therefore,

LΦ ≤ Lf

1 − 1
2hLf

, provided that 1
2hLf < 1 .

Consequently, (12.16) and (12.27) imply that the global error in the
trapezium rule method is O(h2), as h tends to 0.

Figure 12.3 depicts the results of some numerical calculations on the
interval x ∈ [0, 1.6] for the same problem as in Figure 12.2. The step
sizes are 0.4 and 0.2, larger than for Euler’s method; nevertheless we see
a much reduced error in comparison with Euler’s method, and also how
the reduction in the step size h by a factor of 2 gives a reduction in the
error by a factor of about 4, as predicted by our error analysis.

12.5 Runge–Kutta methods

Euler’s method is only first-order accurate; nevertheless, it is simple and
cheap to implement because, to obtain yn+1 from yn, we only require a
single evaluation of the function f , at (xn, yn). Runge–Kutta methods
aim to achieve higher accuracy by sacrificing the efficiency of Euler’s
method through re-evaluating f( · , · ) at points intermediate between
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Fig. 12.3. Trapezium rule method for the solution of (12.20). The exact so-
lution (solid curve) and two sets of results are shown (large and small dots),
using respectively 4 steps of size 0.4, and 8 steps of size 0.2 on [0, 1.6].

(xn, y(xn)) and (xn+1, y(xn+1)). Consider, for example, the following
family of methods:

yn+1 = yn + h(ak1 + bk2) , (12.29)

where

k1 = f(xn, yn) , (12.30)

k2 = f(xn + αh, yn + βhk1) , (12.31)

and where the parameters a, b, α and β are to be determined.
Note that Euler’s method is a member of this family of methods,

corresponding to a = 1 and b = 0. However, we are now seeking methods
that are at least second-order accurate. Clearly (12.29)–(12.31) can be
written in the form (12.13) with

Φ(xn, yn;h) = af(xn, yn) + bf(xn + αh, yn + βhf(xn, yn)) .

By the condition (12.21), a method from this family will be consistent if,
and only if, a + b = 1. Further conditions on the parameters are found
by attempting to maximise the order of accuracy of the method.

To determine the truncation error of the method from (12.14) we need
the higher derivatives of y(x), which are obtained by differentiating the
function f :

y′(xn) = f ,
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y′′(xn) = fx + fyy
′ = fx + fyf ,

y′′′(xn) = fxx + fxyf + (fxy + fyyf)f + fy(fx + fyf) ,

and so on; in these expressions the subscripts x and y denote partial
derivatives, and all functions appearing on the right-hand sides are to
be evaluated at (xn, y(xn)). We also need to expand Φ(xn, y(xn);h) in
powers of h, giving (with the same notational conventions as before)

Φ(xn, y(xn);h) = af + b
(
f + αhfx + βhffy + 1

2 (αh)2fxx

+ αβh2ffxy + 1
2 (βh)2f2fyy + O(h3)

)
.

Thus, we obtain the truncation error in the form

Tn =
y(xn + h) − y(xn)

h
− Φ(xn, y(xn);h)

= f + 1
2h(fx + ffy)

+ 1
6h

2[fxx + 2fxyf + fyyf
2 + fy(fx + fyf)]

−
{
af + b[f + αhfx + βhffy + 1

2 (αh)2fxx

+αβh2ffxy + 1
2 (βh)2f2fyy]

}
+ O(h3) .

As 1 − a − b = 0, the term (1 − a − b)f is equal to 0. The coefficient of
the term in h is

1
2 (fx + ffy) − bαfx − bβffy

which vanishes for all functions f provided that

bα = bβ = 1
2 .

The method is therefore second-order accurate if

β = α , a = 1 − 1
2α , b = 1

2α , α �= 0 ,

showing that there is a one-parameter family of second-order methods of
this form, parametrised by α �= 0. The truncation error of the method
then becomes

Tn = h2{( 1
6 − α

4 )(fxx + fyyf
2) + ( 1

3 − α
2 )ffxy

+ 1
6 (fxfy + ff2

y )} + O(h3) . (12.32)

Evidently there is no choice of the free parameter α which will make
this method third-order accurate for all functions f ; this can be seen,
for example, by considering the initial value problem y′ = y, y(0) = 1,
and noting that in this case (12.32), with f(x, y) = y, yields

Tn = 1
6h

2y(xn) + O(h3) = 1
6h

2exn + O(h3) .
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Two examples of second-order Runge–Kutta methods of the form
(12.29)–(12.31) are the modified Euler method and the improved Eu-
ler method.

(a) The modified Euler method. In this case we take α = 1
2 to

obtain

yn+1 = yn + h f

(
xn +

1
2
h, yn +

1
2
hf(xn, yn)

)
.

(b) The improved Euler method. This is arrived at by choosing
α = 1 which gives

yn+1 = yn +
1
2
h [f(xn, yn) + f(xn + h, yn + hf(xn, yn))] .

For these two methods it is easily verified using (12.32) that the trun-
cation error is of the form, respectively,

Tn =
1
6
h2

[
fy(fx + fyf) +

1
4
(fxx + 2fxyf + fyyf

2)
]

+ O(h3) ,

Tn =
1
6
h2

[
fy(fx + fyf) − 1

2
(fxx + 2fxyf + fyyf

2)
]

+ O(h3) .

A similar but more complicated analysis is used to construct Runge–
Kutta methods of higher order. One of the most frequently used methods
of the Runge–Kutta family is often known as the classical fourth-
order method:

yn+1 = yn +
1
6
h (k1 + 2k2 + 2k3 + k4) ,

where
k1 = f(xn, yn) ,

k2 = f
(
xn + 1

2h, yn + 1
2hk1

)
,

k3 = f
(
xn + 1

2h, yn + 1
2hk2

)
,

k4 = f(xn + h, yn + hk3) .




(12.33)

Here k2 and k3 represent approximations to the derivative y′ at points on
the solution curve, intermediate between (xn, y(xn)) and (xn+1, y(xn+1)),
and Φ(xn, yn;h) is a weighted average of the ki, i = 1, 2, 3, 4, the weights
corresponding to those of Simpson’s rule (to which the classical fourth-
order Runge–Kutta method reduces when ∂f

∂y ≡ 0).
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Fig. 12.4. The errors in three methods for the solution of (12.20) on the in-
terval [0, 1.6]. Reading from the top, the lines (whose slopes indicate first-,
second- and fourth-order convergence) represent the errors of Euler’s method,
the trapezium rule method, and the classical Runge–Kutta method respec-
tively. The horizontal axis indicates the number N = 1.6/h, on a logarithmic
scale, and the vertical axis shows ln |eN | = ln |y(1.6) − yN |.

To illustrate the behaviour of the one-step methods which we have dis-
cussed, Figure 12.4 shows the errors in the calculation of y(1.6), where
y(x) is the solution to the problem (12.20) on the interval [0, 1.6]. The
horizontal axis indicates N , the number of equally spaced mesh points
used in the interval (0, 1.6], on a logarithmic scale, and the vertical axis
shows ln |eN | = ln |y(1.6) − yN |. The three methods employed are Eu-
ler’s method, the trapezium rule method, and the classical Runge–Kutta
method (12.33). The three lines show clearly the improved accuracy of
the higher-order methods, and the rate at which the accuracy improves
as N increases.

12.6 Linear multistep methods

While Runge–Kutta methods give an improvement over Euler’s method
in terms of accuracy, this is achieved by investing additional computa-
tional effort; in fact, Runge–Kutta methods require more evaluations
of f( · , · ) than would seem necessary. For example, the fourth-order
method involves four function evaluations per step. For comparison,
by considering three consecutive points xn−1, xn = xn−1 + h, xn+1 =
xn−1 +2h, integrating the differential equation between xn−1 and xn+1,
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yields

y(xn+1) = y(xn−1) +
∫ xn+1

xn−1

f(x, y(x))dx ,

and applying Simpson’s rule to approximate the integral on the right-
hand side then leads to the method

yn+1 = yn−1 +
1
3
h [f(xn−1, yn−1) + 4f(xn, yn) + f(xn+1, yn+1)] ,

(12.34)
requiring only three function evaluations per step. In contrast with the
one-step methods considered in the previous section where only a single
value yn was required to compute the next approximation yn+1, here we
need two preceding values, yn and yn−1, to be able to calculate yn+1,
and therefore (12.34) is not a one-step method.

In this section we consider a class of methods of the type (12.34) for
the numerical solution of the initial value problem (12.1), (12.2), called
linear multistep methods.

Given a sequence of equally spaced mesh points (xn) with step size h,
we consider the general linear k-step method

k∑
j=0

αjyn+j = h

k∑
j=0

βjf(xn+j , yn+j) , (12.35)

where the coefficients α0, . . . , αk and β0, . . . , βk are real constants. In
order to avoid degenerate cases, we shall assume that αk �= 0 and that
α0 and β0 are not both equal to 0. If βk = 0, then yn+k is obtained
explicitly from previous values of yj and f(xj , yj), and the k-step method
is then said to be explicit. On the other hand, if βk �= 0, then yn+k

appears not only on the left-hand side but also on the right, within
f(xn+k, yn+k); due to this implicit dependence on yn+k the method is
then called implicit. The method (12.35) is called linear because it
involves only linear combinations of the yn+j and the f(xn+j , yn+j),
j = 0, 1, . . . , k; for the sake of notational simplicity, henceforth we shall
often write fn instead of f(xn, yn).

Example 12.4 We have already seen an example of a linear two-step
method in (12.34); here we present further examples of linear multistep
methods.

(a) Euler’s method is a trivial case: it is an explicit linear one-step
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method. The implicit Euler method

yn+1 = yn + hf(xn+1, yn+1) (12.36)

is an implicit linear one-step method. Another trivial example is the
trapezium rule method, given by

yn+1 = yn +
1
2
h (fn+1 + fn) ;

it, too, is an implicit linear one-step method.
(b) The Adams1–Bashforth2 method

yn+4 = yn+3 +
1
24

h (55fn+3 − 59fn+2 + 37fn+1 − 9fn)

is an example of an explicit linear four-step method, while the Adams–
Moulton3 method

yn+3 = yn+2 +
1
24

h (9fn+3 + 19fn+2 − 5fn+1 − 9fn)

is an implicit linear three-step method. �
There are systematic ways of generating linear multistep methods,

but these constructions will not be discussed here. Instead, we turn our
attention to the analysis of linear multistep methods and introduce the
concepts of (zero-) stability, consistency and convergence. The signifi-
cance of these properties cannot be overemphasised: the failure of any
of the three will render the linear multistep method practically useless.

12.7 Zero-stability

As is clear from (12.35) we need k starting values, y0, . . . , yk−1, before
we can apply a linear k-step method to the initial value problem (12.1),
(12.2): of these, y0 is given by the initial condition (12.2), but the others,

1 John Couch Adams (5 June 1819, Laneast, Cornwall, England – 21 January 1892,
Cambridge, Cambridgeshire, England) was educated at St John’s College in Cam-
bridge. In 1841 while he was still an undergraduate, he began to study the irregu-
larities of the motion of Uranus to discover whether these can be attributed to the
action of an undiscovered planet. Four years later he gave accurate information
about the position of the new planet (Neptune) to the director of the Cambridge
Observatory. Adams made several other contributions to astronomy.

2 F. Bashforth: An Attempt to Test the Theories of Capillary Action by Comparing
the Theoretical and Measured Forms of Drops of Fluid. With an Explanation
of the Method of Integration in Constructing Tables Which Give the Theoretical
Form of Such Drops, by J.C. Adams, Cambridge University Press, 1883.

3 F.R. Moulton: New Methods in Exterior Ballistics, University of Chicago Press,
1926.



332 12 Initial value problems for ODEs

y1, . . . , yk−1, have to be computed by other means: say, by using a
suitable one-step method (e.g. a Runge–Kutta method). At any rate,
the starting values will contain numerical errors and it is important to
know how these will affect further approximations yn, n ≥ k, which are
calculated by means of (12.35). Thus, we wish to consider the ‘stability’
of the numerical method with respect to ‘small perturbations’ in the
starting conditions.

Definition 12.3 A linear k-step method (for the ordinary differential
equation y′ = f(x, y)) is said to be zero-stable if there exists a constant
K such that, for any two sequences (yn) and (zn) that have been gener-
ated by the same formulae but different starting values y0, y1, . . . , yk−1

and z0, z1, . . . , zk−1, respectively, we have

|yn − zn| ≤ K max{|y0 − z0|, |y1 − z1|, . . . , |yk−1 − zk−1|} (12.37)

for xn ≤ XM , and as h tends to 0.

We shall prove later on that whether or not a method is zero-stable
can be determined by merely considering its behaviour when applied
to the trivial differential equation y′ = 0, corresponding to (12.1) with
f(x, y) ≡ 0; it is for this reason that the concept of stability formulated
in Definition 12.3 is referred to as zero-stability. While Definition 12.3
is expressive in the sense that it conforms with the intuitive notion of
stability whereby ‘small perturbations at input give rise to small per-
turbations at output’, it would be a very tedious exercise to verify the
zero-stability of a linear multistep method using Definition 12.3 alone.
Thus, we shall next formulate an algebraic equivalent of zero-stability,
known as the Root Condition, which will simplify this task. Before
doing so, however, we introduce some notation.

Given the linear k-step method (12.35) we consider its first and sec-
ond characteristic polynomials, respectively

ρ(z) =
k∑
j=0

αjz
j ,

σ(z) =
k∑
j=0

βjz
j ,

where, as before, we assume that

αk �= 0 , α2
0 + β2

0 �= 0 .
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Before stating the main theorem of this section, we recall a classical
result from the theory of kth-order linear recurrence relations.

Lemma 12.1 Consider the kth-order homogeneous linear recurrence
relation

αkyn+k + · · · + α1yn+1 + α0yn = 0 , n = 0, 1, 2, . . . , (12.38)

with αk �= 0, α0 �= 0, αj ∈ R, j = 0, 1, . . . , k, and the corresponding
characteristic polynomial

ρ(z) = αkz
k + · · · + α1z + α0 .

Let zr, 1 ≤ r ≤ $, $ ≤ k, be the distinct roots of the polynomial ρ, and
let mr ≥ 1 denote the multiplicity of zr, with m1 + · · · + m� = k. If a
sequence (yn) of complex numbers satisfies (12.38), then

yn =
�∑
r=1

pr(n)znr , for all n ≥ 0 , (12.39)

where pr( · ) is a polynomial in n of degree mr − 1, 1 ≤ r ≤ $. In
particular, if all roots are simple, that is mr = 1, 1 ≤ r ≤ k, then the
pr, r = 1, . . . , k, are constants.

Proof We give a sketch of the proof.1 Let us first consider the case when
all of the (distinct) roots z1, z2, . . . , zk are simple. As, by assumption,
α0 �= 0, none of the roots is equal to 0. It is then easy to verify by direct
substitution that, since ρ(zr) = 0, r = 1, 2, . . . , k, each of the sequences
(yn) = (znr ), r = 1, 2, . . . , k, satisfies (12.38).

In order to prove that any solution (yn) of (12.38) can be expressed
as a linear combination of the sequences (zn1 ), (zn2 ), . . . , (znk ), it suffices
to show that these k sequences are linearly independent. To do so, let
us suppose that

C1z
n
1 + C2z

n
2 + · · · + Ckz

n
k = 0 , for all n = 0, 1, 2, . . . .

Then, in particular,

C1 + C2 + · · · + Ck = 0 ,

C1z1 + C2z2 + · · · + Ckzk = 0 ,

. . . . . . . . . . . . . . . . . . . . . . . . . . .

C1z
k−1
1 + C2z

k−1
2 + · · · + Ckz

k−1
k = 0 .

1 For details, see, for example, pp. 213–214 of P. Henrici, Discrete Variable Methods
in Ordinary Differential Equations, Wiley, New York, 1962.
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The matrix of this system of k simultaneous linear equations for the k

unknowns C1, C2, . . . , Ck has the determinant

D =

∣∣∣∣∣∣∣∣
1 1 . . . 1
z1 z2 . . . zk
. . . . . . . . . . . .

zk−1
1 zk−1

2 . . . zk−1
k

∣∣∣∣∣∣∣∣
,

known as the Vandermonde determinant, and D =
∏
r<s(zs−zr). Since

the roots are distinct, D �= 0, so the matrix of the system is nonsingular.
Therefore C1 = C2 = · · · = Ck = 0 is the unique solution, which then
means that the sequences (zn1 ), (zn2 ), . . . , (znk ) are linearly independent.

Now, suppose that (yn) is any solution of (12.38); as D �= 0, there
exists a unique set of k constants, C1, C2, . . . , Ck, such that

ym = C1z
m
1 + C2z

m
2 + · · · + Ckz

m
k , m = 0, 1, . . . , k − 1 . (12.40)

Substituting these equalities into (12.38) for n = 0, we conclude that

0 = αkyk + αk−1(C1z
k−1
1 + · · · + Ckz

k−1
k ) + · · ·

+α0(C1z
0
1 + · · · + Ckz

0
k)

= αkyk + C1(ρ(z1) − αkz
k
1 ) + · · · + Ck(ρ(zk) − αkz

k
k)

= αk(yk − (C1z
k
1 + · · · + Ckz

k
k)) .

As αk �= 0, it follows that

yk = C1z
k
1 + · · · + Ckz

k
k ,

which, together with (12.40), proves (12.39) for 0 ≤ n ≤ k in the case of
simple roots. Next, we select n = 1 in (12.38) and proceed in the same
manner as in the case of n = 0 discussed above to show that (12.39)
holds for 0 ≤ n ≤ k + 1. Continuing in the same way, we deduce by
induction that (12.39) holds for all n ≥ 0.

In the case when ρ(z) has repeated roots, the proof is similar, except
that instead of (znr ), r = 1, 2, . . . , n, the following k sequences are used:

(znr ) ,

(nznr ) ,

. . . . . . . . .

(n(n − 1) . . . (n − mr + 2)znr ) , r = 1, 2, . . . , $ .




(12.41)

These can be shown to satisfy (12.38) by direct substitution on noting
that ρ(zr) = ρ′(zr) = · · · = ρ(mr−1)(zr) = 0, given that zr is a root of



12.7 Zero-stability 335

ρ(z) of multiplicity mr, r = 1, 2, . . . , $. The linear independence of the
sequences (12.41) follows as before, except instead of

∏
r<s(zs− zr), the

value of the corresponding determinant is now

D1 =
∏

1≤r<s≤�
(zr − zs)mr+ms

�∏
r=1

(mr − 1)!!

where 0!! = 1, m!! = m! (m − 1)! . . . 1! for m = 1, 2, . . .. As the roots
z1, z2, . . . , z� are distinct, we have that D1 �= 0, and therefore the se-
quences (12.41) are linearly independent. The rest of the argument is
identical as in the case of simple roots.1

Now, we are ready to state the main result of this section.

Theorem 12.4 (Root Condition) A linear multistep method is zero-
stable for any initial value problem of the form (12.1), (12.2), where f

satisfies the hypotheses of Picard’s Theorem, if, and only if, all roots
of the first characteristic polynomial of the method are inside the closed
unit disc in the complex plane, with any which lie on the unit circle being
simple.

The algebraic stability condition contained in this theorem, namely
that the roots of the first characteristic polynomial lie in the closed unit
disc and those on the unit circle are simple, is often called the Root
Condition.

Proof of theorem Necessity. Consider the method (12.35), applied to
y′ = 0:

αkyn+k + · · · + α1yn+1 + α0yn = 0 . (12.42)

According to Lemma 12.1, every solution of this kth-order linear recur-
rence relation has the form

yn =
�∑
r=1

pr(n)znr , (12.43)

where zr is a root, of multiplicity mr ≥ 1, of the first characteristic
polynomial ρ of the method, and the polynomial pr has degree mr − 1,
1 ≤ r ≤ $, $ ≤ k. Clearly, if |zr| > 1 for some r, then there are starting
values y0, y1, . . . , yk−1 for which the corresponding solution grows like
1 We warn the reader that in certain mathematical texts the notationm!! is, instead,
used to mean m · (m − 2) . . . 5 · 3 · 1 for m odd and m · (m − 2) . . . 6 · 4 · 2 for m
even.
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|zr|n, and if |zr| = 1 and the multiplicity is mr > 1, then there is a
solution growing like nmr−1. In either case there are solutions that grow
unboundedly as n → ∞, i.e., as h → 0 with nh fixed. Considering
starting values y0, y1, . . . , yk−1 which give rise to such an unbounded
solution (yn), and starting values z0 = z1 = · · · = zk−1 = 0 for which
the corresponding solution of (12.42) is (zn) with zn = 0 for all n, we
see that (12.37) cannot hold. To summarise, if the Root Condition is
violated, then the method is not zero-stable.

Sufficiency. The proof that the Root Condition is sufficient for zero-
stability is long and technical, and will be omitted here. For details, the
interested reader is referred to Theorem 3.1 on page 353 of W. Gautschi,
Numerical Analysis: an Introduction, Birkhäuser, Boston, MA, 1997.

Example 12.5 We shall explore the zero-stability of the methods from
Example 12.4 using the Root Condition.

(a) The Euler method and the implicit Euler method have first charac-
teristic polynomial ρ(z) = z−1 with simple root z = 1, so both methods
are zero-stable. The same is true of the trapezium rule method.

(b) The Adams–Bashforth and Adams–Moulton methods considered
in Example 12.4 have first characteristic polynomials, respectively, ρ(z) =
z3(z − 1) and ρ(z) = z2(z − 1). These have multiple root z = 0 and
simple root z = 1, and therefore both methods are zero-stable.

(c) The three-step method

11yn+3 + 27yn+2 − 27yn+1 − 11yn
= 3h (fn+3 + 9fn+2 + 9fn+1 + fn) (12.44)

is not zero-stable. Indeed, the corresponding first characteristic polyno-
mial ρ(z) = 11z3 + 27z2 − 27z − 11 has roots at z1 = 1, z2 ≈ −0.32,
z3 = −3.14, so |z3| > 1.

(d) The first characteristic polynomial of the three-step method

yn+3 + yn+2 − yn+1 − yn = 2h(fn+2 + fn+1)

is ρ(z) = z3 + z2 − z − 1 = (z + 1)(z2 − 1), which has roots z1/2 = −1,
z3 = 1. The first of these is a double root lying on the unit circle;
therefore, the method is not zero-stable. �
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12.8 Consistency

In this section we consider the accuracy of the linear k-step method
(12.35). For this purpose, as in the case of one-step methods, we intro-
duce the notion of truncation error. Thus, suppose that y is a solution to
the ordinary differential equation (12.1). The truncation error of (12.35)
is then defined as follows:

Tn =

∑k
j=0 [αjy(xn+j) − hβjf(xn+j , y(xn+j))]

h
∑k
j=0 βj

. (12.45)

Of course, the definition requires implicitly that σ(1) =
∑k
j=0 βj �= 0.

Again, as in the case of one-step methods, the truncation error can be
thought of as the residual that is obtained by inserting the solution of the
differential equation into the formula (12.35) and scaling this residual
appropriately (in this case dividing through by h

∑k
j=0 βj), so that Tn

resembles y′ − f(x, y(x)).

Definition 12.4 The numerical method (12.35) is said to be consistent
with the differential equation (12.1) if the truncation error defined by
(12.45) is such that for any ε > 0 there exists an h(ε) for which

|Tn| < ε for 0 < h < h(ε) ,

and any k + 1 points (xn, y(xn)), . . . , (xn+k, y(xn+k)) on any solution
curve in D of the initial value problem (12.1), (12.2).

Now, let us suppose that the solution to the differential equation
is sufficiently smooth, and let us expand the expressions y(xn+j) and
f(xn+j , y(xn+j)) = y′(xn+j) into Taylor series about the point xn. On
substituting these expansions into the numerator in (12.45) we obtain

Tn =
1

hσ(1)
[
C0y(xn) + C1hy

′(xn) + C2h
2y′′(xn) + · · ·

]
(12.46)

where

C0 =
k∑
j=0

αj ,

C1 =
k∑
j=1

jαj −
k∑
j=0

βj ,

C2 =
k∑
j=1

j2

2! αj −
k∑
j=1

jβj ,

· · ·

Cq =
k∑
j=1

jq

q! αj −
k∑
j=1

jq−1

(q−1)!βj .




(12.47)
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For consistency we need that, as h → 0 and n → ∞ with xn → x ∈
[x0, XM ], the truncation error Tn tends to 0. This requires that C0 = 0
and C1 = 0 in (12.46). In terms of the characteristic polynomials this
consistency requirement can be restated in compact form as

ρ(1) = 0 and ρ′(1) = σ(1) (�= 0) .

Let us observe that, according to this condition, if a linear multistep
method is consistent, then it has a simple root on the unit circle at
z = 1; thus, the Root Condition is not violated by this root.

Definition 12.5 The numerical method (12.35) is said to have order
of accuracy p, if p is the largest positive integer such that, for any suf-
ficiently smooth solution curve in D of the initial value problem (12.1),
(12.2), there exist constants K and h0 such that

|Tn| ≤ Khp for 0 < h ≤ h0 ,

for any k + 1 points (xn, y(xn)), . . . , (xn+k, y(xn+k)) on the solution
curve.

Thus, we deduce from (12.46) that the method is of order of accuracy
p if, and only if,

C0 = C1 = · · · = Cp = 0 and Cp+1 �= 0 .

In this case,

Tn =
Cp+1

σ(1)
hpy(p+1)(xn) + O(hp+1) .

The number Cp+1/σ(1) is called the error constant of the method.

Example 12.6 Let us determine all values of the real parameter b,
b �= 0, for which the linear multistep method

yn+3 + (2b − 3)(yn+2 − yn+1) − yn = hb(fn+2 + fn+1)

is zero-stable. We shall show that there exists a value of b for which the
order of the method is 4, and that if the method is zero-stable for some
value of b, then its order cannot exceed 2.
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According to the Root Condition, this linear multistep method is zero-
stable if, and only if, all roots of its first characteristic polynomial

ρ(z) = z3 + (2b − 3)(z2 − z) − 1

belong to the closed unit disc, and those on the unit circle are simple.
Clearly, ρ(1) = 0; upon dividing ρ(z) by z − 1 we see that ρ(z) can be

written in the following factorised form:

ρ(z) = (z − 1)ρ1(z) , where ρ1(z) = z2 − 2(1 − b)z + 1 .

Thus, the method is zero-stable if, and only if, all roots of the polynomial
ρ1(z) belong to the closed unit disc, and those on the unit circle are
simple and differ from 1. Suppose that the method is zero-stable. It
then follows that b �= 0 and b �= 2, since these values of b correspond to
double roots of ρ1(z) on the unit circle, respectively, z = 1 and z = −1.
Further, since the product of the two roots of ρ1(z) is equal to 1, both
have modulus less than or equal to 1, and neither of them is equal
to ±1, it follows that they must both be strictly complex; hence the
discriminant of the quadratic polynomial ρ1(z) must be negative. That
is, 4(1 − b)2 − 4 < 0 . In other words, b ∈ (0, 2).

Conversely, suppose that b ∈ (0, 2). Then, the roots of ρ(z) are

z1 = 1 , z2/3 = 1 − b + ı
√

1 − (b − 1)2 .

Since |z2/3| = 1, z2/3 �= 1 and z2 �= z3, all roots of ρ(z) lie on the
unit circle and they are simple. Hence the method is zero-stable. To
summarise, the method is zero-stable if, and only if, b ∈ (0, 2).

In order to analyse the order of accuracy of the method, we note that,
upon Taylor series expansion, its truncation error can be written in the
form

Tn =
1

σ(1)

[(
1 − b

6

)
h2y′′′(xn) +

1
4
(6 − b)h3yiv(xn)

+
1

120
(150 − 23b)h4yv(xn) + O(h5)

]
,

where σ(1) = 2b �= 0. If b = 6, then Tn = O(h4) and so the method is of
order 4. As b = 6 does not belong to the interval (0, 2), we deduce that
the method is not zero-stable for b = 6.

Since zero-stability requires b ∈ (0, 2), in which case 1 − b
6 �= 0, it

follows that if the method is zero-stable, then Tn = O(h2). �
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12.9 Dahlquist’s theorems

An important result connecting the concepts of zero-stability, consis-
tency and convergence of a linear multistep method was proved by the
Swedish mathematician Germund Dahlquist.

Theorem 12.5 (Dahlquist’s Equivalence Theorem) For a linear
k-step method that is consistent with the ordinary differential equation
(12.1) where f is assumed to satisfy a Lipschitz condition, and with
consistent starting values,1 zero-stability is necessary and sufficient for
convergence. Moreover if the solution y has continuous derivative of
order p + 1 and truncation error O(hp), then the global error of the
method, en = y(xn) − yn, is also O(hp).

The proof of this result is long and technical; for details of the argu-
ment, see Theorem 6.3.4 on page 357 of W. Gautschi, Numerical Anal-
ysis: an Introduction, Birkhäuser, Boston, MA, 1997, or Theorem 5.10
on page 244 of P. Henrici, Discrete Variable Methods in Ordinary Dif-
ferential Equations, Wiley, New York, 1962.

By virtue of Dahlquist’s theorem, if a linear multistep method is not
zero-stable its global error cannot be made arbitrarily small by taking
the mesh size h sufficiently small for any sufficiently accurate initial data.
In fact, if the Root Condition is violated, then there exists a solution
to the linear multistep method which will grow by an arbitrarily large
factor in a fixed interval of x, however accurate the starting conditions
are. This result highlights the importance of the concept of zero-stability
and indicates its relevance in practical computations.

A second theorem by Dahlquist imposes a restriction on the order of
accuracy of a zero-stable linear multistep method.

Theorem 12.6 (Dahlquist’s Barrier Theorem) The order of accu-
racy of a zero-stable k-step method cannot exceed k + 1 if k is odd, or
k + 2 if k is even.

A proof of this result will be found in Section 4.2 of Gautschi’s book
or in Section 5.2-8 of Henrici’s book, cited above.

Theorem 12.6 makes it very difficult to choose a ‘best’ multistep
method of a given order. Suppose, for example, that we consider five-
step methods. The general five-step method involves 12 parameters, of
1 That is, with starting values yj = ηj ≡ ηj(h), j = 0, . . . , k− 1, which all converge
to the exact initial value y0, as h→ 0.
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which 11 are independent: the method is obviously unaffected by mul-
tiplying all the parameters by a nonzero constant. Now it would be
possible to construct a five-step method of order 10, by solving the 11
equations of the form Cq = 0, q = 0, 1, . . . , 10, where Cq is given in
(12.47). But the Barrier Theorem states that this method would not be
zero-stable, and the order of a zero-stable five-step method cannot ex-
ceed 6. There is a family of stable five-step methods of order 6, involving
4 free parameters, and there is no obvious way of deciding whether any
one of these methods is better than the others.

Example 12.7 (i) The Barrier Theorem says that when k = 1 the order
of accuracy of a zero-stable method cannot exceed 2. The trapezium rule
method has order 2, and is zero-stable.

(ii) The two-step method

yn+2 − yn = h( 1
3fn+2 + 4

3fn+1 + 1
3fn)

is zero-stable, as the roots of the first characteristic polynomial, ρ(z) =
z2 − 1, are 1 and −1. A simple calculation shows that its order of
accuracy is 4; by the Barrier Theorem, this is the highest order which
could be achieved by a two-step method.

(iii) The three-step method

11yn+3 + 27yn+2 − 27yn+1 − 11yn
= 3h (fn+3 + 9fn+2 + 9fn+1 + fn)

has order 6. The Barrier Theorem therefore implies that this method is
not zero-stable. We have already shown this in Example 12.5(c) using
the Root Condition.

It is found that all the zero-stable k-step methods of highest possible
order are implicit, with βk nonzero.

12.10 Systems of equations

In this section we discuss the application of numerical methods to si-
multaneous systems of differential equations, which we shall write in the
form

dy
dx

= f(x,y) .
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Here y is an m-component vector function of x, and f is an m-component
vector function of the independent variable x and the vector variable y.
In component form the system becomes

dyj
dx

= fj(x, y1, . . . , ym) , j = 1, 2, . . . ,m .

The system comprises m simultaneous differential equations. To single
out a unique solution we need m side conditions, and we shall suppose
that all these conditions are given at the same value of x, and have the
form

y(x0) = y0 ,

or, in component form,

yj(x0) = yj,0 , j = 1, 2, . . . ,m ,

where the values of yj,0 are given. This is called an initial value problem
for a system of ordinary differential equations; we may also require a
solution of the system on an interval [a, b], with r conditions given at
one end of the interval and m − r conditions at the other end. This
constitutes a boundary value problem, and requires different numerical
methods which are considered in the next chapter.

All the numerical methods which we have discussed apply without
change to systems of differential equations; it is only necessary to realise
that we are dealing with vectors. For example, the first stage of the
classical Runge–Kutta method (12.33) becomes

k1 = f(xn,yn) ;

we must evaluate all the elements of the vector k1 before proceeding to
the next stage to calculate k2, and so on.

The most important difference which arises in dealing with a sys-
tem of differential equations is in the practical use of an implicit multi-
step method. As we have seen, this almost always requires an iterative
method for the solution of an equation to determine yn+1. Applying
such a method to a system of differential equations now involves the
solution of a system of equations, which will usually be nonlinear, to de-
termine the elements of the vector yn+1. In real-life problems it is quite
common to deal with systems of several hundred differential equations,
and it then becomes very important to be sure that the improved effi-
ciency of the implicit method justifies the very considerable extra work
in each step of the process.

We shall not discuss the extension of our earlier analysis to deal with
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systems of differential equations; in almost all cases we simply need to
introduce vector notation, and replace the absolute value of a number
by the norm of a vector. For example, in the proof of Theorem 12.2,
(12.17) becomes

‖en+1‖ ≤ ‖en‖ + hLΦ‖en‖ + h‖Tn‖ , n = 0, 1, . . . , N − 1 ,

where ‖ · ‖ is any norm on R
m, with obvious definitions of the global

error en and the truncation error Tn. Similarly, Picard’s Theorem and
its proof, discussed at the beginning of the chapter in the case of a
single ordinary differential equation, can be easily extended to an m-
component system of differential equations by replacing the absolute
value sign with a vector norm on R

m throughout.

12.11 Stiff systems

The phenomenon of stiffness usually appears only in a system of differ-
ential equations, but we begin by discussing an almost trivial example
of a single equation,

y′ = λy , y(0) = y0 ,

where λ is a constant. The solution of this equation is evidently y(x) =
y0 exp(λx). When λ < 0 the absolute value of the solution is exponen-
tially decreasing, so it is sensible to require that the absolute value of our
numerical solution also decreases. It is very easy to give expressions for
the result of a numerical solution using Euler’s method and the implicit
Euler method (12.36). They are, respectively,

yE
n = (1 + hλ)ny0 , yI

n = (1 − hλ)−ny0 .

When λ < 0 and h > 0, we have (1 − hλ) > 1; therefore, the sequence
(|yI
n|) decreases monotonically with increasing n. On the other hand,

for λ < 0 and h > 0,

|1 + hλ| < 1 if, and only if, 0 < h|λ| < 2 .

This gives the restriction h|λ| < 2 on the size of h for which the sequence
(|yE
n |) decreases monotonically; if h exceeds 2/|λ|, the numerical solution

obtained by Euler’s method will oscillate with increasing magnitude with
increasing n and fixed h > 0, instead of converging to zero as n → ∞.

We now consider the same two methods applied to the initial value
problem for a system of differential equations of the form

y′ = Ay , y(0) = y0 ,
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where A is a square matrix of order m, each of whose elements is a
constant. For simplicity we assume that the eigenvalues of A are distinct,
so there exists a matrix M such that MAM−1 = Λ is a diagonal matrix.
The system of differential equations is therefore equivalent to

z′ = Λz , z(0) = z0 = My0 ,

with z = My. In this form the system reduces to a set of m independent
equations, whose solutions are

zj = zj(0) exp(λjx) , j = 1, 2, . . . ,m ,

where the numbers λj , j = 1, 2, . . . ,m, are the diagonal elements of the
matrix Λ, and are therefore the eigenvalues of A. In particular, if all
the λj , j = 1, 2, . . . ,m, are real and negative, then limx→+∞ ‖z(x)‖ = 0
and since

‖y(x)‖ = ‖M−1 z(x)‖ ≤ ‖M−1‖ ‖z(x)‖ ,

also

lim
x→+∞ ‖y(x)‖ = 0 .

Here ‖ · ‖ is any norm on R
m, and the norm on M−1 is the associated

subordinate matrix norm defined in Chapter 2.
In just the same way, Euler’s method applied to the system gives

yn+1 = (I + hA)yn ,

which leads to

zn+1 = Myn+1 = M(I + hA)yn
= M(I + hA)M−1zn = (I + hΛ)zn .

Thus, the result yn+1 of Euler’s method applied to the initial value
problem y′ = Ay, y(0) = y0, is exactly the same as M−1zn+1, where
zn+1 is the result of applying Euler’s method to the transformed problem
z′ = Λz, z(0) = My0; an analogous remark applies to the use of the
implicit Euler method.

Suppose that all the eigenvalues λj , j = 1, 2, . . . ,m, are real and
negative. Then, in order to ensure that, for a fixed positive value of h,

lim
n→∞ ‖yn‖ = 0 ,

we must require that, for Euler’s method, h|λj | < 2, j = 1, 2, . . . ,m; for
the implicit Euler method no such condition is required. The importance
of this fact is highlighted by a numerical example.
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We consider the system where A is the 2 × 2 matrix

A =
(

−8003 1999
23988 −6004

)
,

and the initial condition is

y(0) =
(

1
4

)
.

The eigenvalues of A are λ1 = −7 and λ2 = −14000; the solution of the
problem is

y(x) =
(

e−7x

4e−7x

)
.

Clearly, limx→+∞ ‖y(x)‖ = 0.
The numerical solution uses 12 steps of size h = 0.004; the results

are shown in Table 12.1. The second column gives the first component
of the solution, y1(x) = e−7x, the third column shows the result from
the implicit Euler method, and the last gives the result of the standard
Euler method. The last column is a dramatic example of what happens
when the step size h is too large; in this case h|λ2| = 56. The numerical
values given by the implicit Euler method have an error of a few units in
the third decimal digit; to get the same accuracy from the Euler method
would require a step size about 30 times smaller, and about 30 times as
much work.

It is clear that the difficulty in the numerical example is caused by the
size of the eigenvalue −14000, but what is important is its size relative
to the other eigenvalue. The special constant-coefficient system y′ = Ay

is said to be stiff if all the eigenvalues of A have negative real parts, and
if the ratio of the largest of the real parts to the smallest of the real parts
is large. Most practical problems are nonlinear, and for such problems it
is quite difficult to define precisely what is meant by stiffness.1 To begin
with we may replace the system by a linearised approximation, the first
terms of an expansion

y′(x) = y′(xn) +
∂f

∂x
(xn, y(xn))(x − xn) + J(xn)(y(x) − y(xn)) + · · ·

1 Indeed, even in the case of variable-coefficient linear systems of differential equa-
tions, stiffness can be defined in several (nonequivalent) ways; for a discussion of
the pros and cons of the various definitions, we refer to Section 6.2 of J.D. Lam-
bert, Numerical Methods for Ordinary Differential Systems, Wiley, Chichester,
1991.
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Table 12.1. The use of Euler’s method and the implicit Euler method
to solve a stiff system.

x y1(x) Implicit Euler Euler

0.000 1.000 1.000 1.000
0.004 0.972 0.973 0.972
0.008 0.946 0.946 0.945
0.012 0.919 0.920 0.918
0.016 0.894 0.895 0.893
0.020 0.869 0.871 0.868
0.024 0.845 0.847 0.843
0.028 0.822 0.824 0.820
0.032 0.799 0.802 0.794
0.036 0.777 0.780 0.941
0.040 0.756 0.759 −8.430
0.044 0.735 0.738 505.769
0.048 0.715 0.718 −27776.357

where J is the Jacobian matrix of the function f , whose (i, j)-entry is

(J(xn))ij =
∂fi
∂yj

(xn,y(xn)) .

We can then think of the system as being stiff if the eigenvalues of the
matrix J(xn) have negative real parts and if the ratio of the largest of the
real parts to the smallest is large. Although this gives some indication
of the sort of problems which may cause difficulty, the behaviour of
nonlinear systems is much more complicated than this. It is not difficult
to construct examples in which all the eigenvalues of the Jacobian matrix
have negative real parts, yet the norm of the solution of the differential
equation is exponentially increasing as x → +∞.

Even though any classification of nonlinear systems of differential
equations into stiff and nonstiff, based only on monitoring the eigen-
values of J(xn), is somewhat simplistic, it does highlight some of the
key difficulties. Stiff systems of differential equations arise in many ap-
plication areas, a typical one being chemical engineering. For example,
in parts of an oil refinery there may be a large number of substances un-
dergoing chemical reactions with widely different reaction rates. These
reaction rates correspond to the eigenvalues of the Jacobian matrix, and
it is not unusual to find the ratio of the largest of the real parts to the
smallest to be in excess of 1010. For such problems it is essential to
find a numerical method which imposes no restriction on the step size;
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Euler’s method, which might require the restriction 1010h < 2, would
evidently be quite useless.

Application of the linear multistep method

k∑
j=0

αjyn+j = h
k∑
j=0

βjf(xn+j , yn+j)

to the equation y′ = λy leads to the kth-order linear recurrence relation

k∑
j=0

(αj − λhβj)yn+j = 0 . (12.48)

The characteristic polynomial of the linear recurrence relation (12.48) is

π(z;λh) =
k∑
j=0

(αj − λhβj)zj .

Alternatively, we can write this in terms of the first and second charac-
teristic polynomials of the linear multistep method as

π(z;λh) = ρ(z) − λhσ(z) .

In the present context, the polynomial π( · ;λh) is usually referred to as
the stability polynomial of the linear multistep method. According
to Lemma 12.1, the general solution of the recurrence relation (12.48)
can be expressed in terms of the distinct roots zr, 1 ≤ r ≤ $, $ ≤ k, of
π( · ;λh). Letting mr denote the multiplicity of the root zr, 1 ≤ r ≤ $,
m1 + · · · + m� = k, we have that

yn =
�∑
r=1

pr(n)znr , (12.49)

where the polynomial pr( · ) has degree mr − 1, 1 ≤ r ≤ $.
Clearly, the roots zr are functions of λh. For λ ∈ C, with Re(λ) < 0,

the solution of the model problem

y′ = λy , y(0) = y0 ,

converges in C to 0 as x → ∞. Thus, we would like to ensure that, when
a linear multistep method is applied to this problem, the step size h can
be chosen so that the resulting sequence of numerical approximations
(yn) exhibits an analogous behaviour as n → ∞, that is, limn→∞ yn = 0.
By virtue of (12.49), this can be guaranteed by demanding that each root
zr = zr(λh) has modulus less then 1.
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Definition 12.6 A linear multistep method is said to be absolutely
stable for a given value of λh if each root zr = zr(λh) of the associated
stability polynomial π( · ;λh) satisfies |zr(λh)| < 1.

Our aim is, therefore, to single out those values of λh for which the
linear multistep method is absolutely stable.

Definition 12.7 The region of absolute stability of a linear multi-
step method is the set of all points λh in the complex plane for which
the method is absolutely stable.

Ideally, the region of absolute stability of the method should admit all
values of λ, Re(λ) < 0, so as to ensure that there is no limitation on the
size of h, however large |λ| may be. This leads us to the next definition.

Definition 12.8 A linear multistep method is said to be A-stable if
its region of absolute stability contains the negative (left) complex half-
plane.

Unfortunately, the condition of A-stability is extremely demanding.
Dahlquist1 has shown the following results which are collectively known
as his Second Barrier Theorem:

(i) No explicit linear multistep method is A-stable;
(ii) No A-stable linear multistep method can have order greater than

2.
(iii) The second-order A-stable linear multistep method with the small-

est error constant is the trapezium rule method.

The trapezium rule method is a one-step method, so the associated
stability polynomial has only one root, given by

z =
1 + 1

2λh

1 − 1
2λh

.

Evidently |z| < 1 if Re(hλ) = h Re(λ) < 0, so the trapezium rule method
is indeed A-stable.

To construct useful methods of higher order we need to relax the
condition of A-stability by requiring that the region of absolute stability
should include a large part of the negative half-plane, and certainly that
it contains the whole of the negative real axis.
1 G. Dahlquist, A special stability problem for linear multistep methods, BIT 3,
27–43, 1963.
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The most efficient methods of this kind in current use are the Back-
ward Differentiation Formulae, or BDF methods. These are the
linear multistep methods (12.35) in which βj = 0, 0 ≤ j ≤ k − 1, k ≥ 1,
and βk �= 0. Thus,

αkyn+k + · · · + α0yn = hβkfn+k .

The coefficients are obtained by requiring that the order of accuracy of
the method is as high as possible, i.e., by making the coefficients Cj zero
in (12.47) for j = 0, 1, . . . , k. For k = 1 this yields the implicit Euler
method (BDF1), whose order of accuracy is, of course, 1; the method is
A-stable. The choice of k = 6 results in the sixth-order, six-step BDF
method (BDF6):

147yn+6 − 360yn+5 + 450yn+4 − 400yn+3 + 225yn+2 − 72yn+1 + 10yn
= 60hfn+6 . (12.50)

Although the method (12.50) is not A-stable, its region of absolute sta-
bility includes the whole of the negative real axis (see Figure 12.5). For
the intermediate values, k = 2, 3, 4, 5, we have the following kth-order,
k-step BDF methods, respectively:

3yn+2 − 4yn+1 + yn = 2hfn+2 ,

11yn+3 − 18yn+2 + 9yn+1 − 2yn = 6hfn+3 ,

25yn+4 − 48yn+3 + 36yn+2 − 16yn+1 + 3yn = 12hfn+4 ,

137yn+5 − 300yn+4 + 300yn+3 − 200yn+2 + 75yn+1 − 12yn = 60hfn+5 ,

referred to as BDF2, BDF3, BDF4 and BDF5. Their regions of absolute
stability are also shown in Figure 12.5. In each case the region of absolute
stability includes the negative real axis. Higher-order methods of this
type cannot be used, as all BDF methods, with k > 6, are zero-unstable.

12.12 Implicit Runge–Kutta methods

For Runge–Kutta methods absolute stability is defined in much the same
way as for linear multistep methods; i.e., by applying the method in
question to the model problem y′ = λy, y(0) = y0, λ ∈ C, Re(λ) < 0, and
demanding that the resulting sequence (yn) converges to 0 as n → ∞,
with hλ held fixed. The set of all values of hλ in the complex plane for
which the method is absolutely stable is called the region of absolute
stability of the Runge–Kutta method.

Classical Runge–Kutta methods are explicit, and are unsuitable for
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Fig. 12.5. Absolute stability regions in the complex plane for k-step Backward
Differentiation Formulae, k = 1, 2, . . . , 6. In each case the region of absolute
stability is the set of points in the complex plane outside the white region. In
each case, the region of absolute stability contains the whole of the negative
real axis.
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Fig. 12.6. The dark chequered region in the figure on the left indicates part
of the absolute stability region in the complex plane for the four-step, fourth-
order Backward Differentiation Formula, BDF4 (zoom into Figure 12.5(d));
here we only show the section of the region of absolute stability for BDF4
which lies in the rectangle −8 < Re(λh) < 0 and −4 < Im(λh) < 4, with
Re(λ) < 0, h > 0. The dark region in the figure on the right shows the
region of absolute stability for the classical explicit fourth-order Runge–Kutta
method, RK4. For BDF4, the region of absolute stability includes the whole
of the negative real axis; clearly, this is not the case for RK4.

stiff systems because of their small region of absolute stability. Figure
12.6 depicts the region of absolute stability of the classical fourth-order
Runge–Kutta method, together with that of the fourth-order Backward
Differentiation Formula, BDF4. The contrast is striking: while the re-
gion of absolute stability of BDF4 includes most of the negative half-
plane and, in particular, all of the negative real axis, for RK4 the region
of absolute stability is bounded1 (for example, along the negative real
axis it does not extend to the left of, approximately, −2.8).

Motivated by the fact that BDF methods are implicit, we now go on
to introduce implicit Runge–Kutta methods, which can also have a large
region of absolute stability.

The general s-stage Runge–Kutta method is written

yn+1 = yn + h

s∑
i=1

biki ,

1 This is not a peculiarity of RK4. It can be shown that every explicit Runge–Kutta
method has bounded region of absolute stability; see, for example, Section 5.12,
in J.D. Lambert’s book, cited in the previous section.
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where

ki = f(xn + hci, yn + h

s∑
j=1

aijkj) , 1 ≤ i ≤ s . (12.51)

It is convenient to display the coefficients in a Butcher tableau

c1 a11 . . . a1s

. . . . . . . . . . . .

cs as1 . . . ass

b1 . . . bs

The method is then defined by the matrix A = (aij) ∈ R
s×s, of order s,

and the two vectors b = (b1, . . . , bs)T ∈ R
s and c = (c1, . . . , cs)T ∈ R

s.
For example, the classical four-stage Runge–Kutta method is defined by
the tableau

0
1
2

1
2

1
2 0 1

2

1 0 0 1
1
6

2
3

2
3

1
6

The 4 × 4 array representing the matrix A for this method, displayed
in the upper right quadrant of the tableau, follows the usual notational
convention that zero elements after the last nonzero element in each row
of the matrix A are omitted.

This is an explicit method, shown by the fact that the matrix A is
strictly lower triangular, with aij = 0 when 1 ≤ i ≤ j ≤ 4. Each
value ki can therefore be calculated in sequence, all the quantities on
the right-hand side of (12.51) being known.

It is not difficult to construct s-stage implicit methods which are A-
stable. For example, this can be done by choosing the coefficients ci and
bi to be the quadrature points and weights respectively in the Gauss
quadrature formula for the evaluation of∫ 1

0

g(x)dx ≈
s∑
i=1

big(ci) .

The numbers aij can then be chosen so that the method has order 2s,
and is A-stable.

For example, the array
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1
6 (3 − √

3) 1
4

1
12 (3 − 2

√
3)

1
6 (3 +

√
3) 1

12 (3 + 2
√

3) 1
4

1
2

1
2

defines a 2-stage A-stable method of order 4.
However, there is a heavy price to pay for using implicit methods of

this kind, as we now have to calculate all the numbers ki, i = 1, 2, . . . , s,
simultaneously, not in succession. For a system of m differential equa-
tions an implicit linear multistep method requires the solution of m

simultaneous equations at each step; an s-stage implicit Runge–Kutta
method requires the solution of sm simultaneous equations. This is
a considerable increase in cost, and the general implicit Runge–Kutta
methods cannot compete in efficiency with the Backward Differentiation
Formulae such as (12.50); their use is almost exclusively limited to stiff
systems of ODEs.

The overall computational effort can be somewhat reduced by using
diagonally implicit Runge–Kutta (or DIRK) methods, in which the
matrix A is lower triangular, so that aij = 0 if j > i. A further im-
provement in efficiency is possible by requiring in addition that all the
diagonal elements aii are the same; unfortunately it has proved difficult
to construct such methods with order greater than 4.

12.13 Notes

In this chapter we have only been able to introduce some of the basic
ideas in what has become a vast area of numerical analysis. In particular
we have not discussed the practical implementation of the various meth-
ods. The questions of how to choose the step size h to obtain efficiently
a prescribed accuracy, and when and how to adjust h during the course
of the calculation, are dealt with in the following books.

➧ E. Hairer, S.P. Nørsett, and G. Wanner, Solving Ordinary
Differential Equations I: Nonstiff Problems, Second Edition, Springer
Series in Computational Mathematics, 8, Springer, Berlin, 1993.

➧ A. Iserles, A First Course in the Numerical Analysis of Differential
Equations, Cambridge University Press, Cambridge, 1996.

➧ J.D. Lambert, Numerical Methods for Ordinary Differential Sys-
tems, John Wiley & Sons, Chichester, 1991.
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For a study of dynamical systems and their numerical analysis, with
focus on long-time behaviour, we refer to

➧ A.M. Stuart and A.R. Humphries, Dynamical Systems and Nu-
merical Analysis, Cambridge University Press, Cambridge, 1999.

The numerical solution of stiff initial value problems for systems of or-
dinary differential equations is discussed in

➧ E. Hairer and G. Wanner, Solving Ordinary Differential Equa-
tions II: Stiff and Differential-Algebraic Problems, Springer Series in
Computational Mathematics, 14, Springer, Berlin, 1991.

An extensive survey of the theory of Runge–Kutta and linear multistep
methods is found in

➧ J.C. Butcher, The Numerical Analysis of Ordinary Differential
Equations. Runge–Kutta and General Linear Methods, Wiley-Inter-
science, John Wiley & Sons, Chichester, 1987.

Satisfactory theoretical treatment of nonlinear systems of differential
equations from the point of view of stiffness requires the development of a
genuinely nonlinear stability theory which does not involve the rather du-
bious idea of defining stiffness through linearisation based on the ‘frozen
Jacobian matrix’. We close by mentioning just one concept in this di-
rection – that of algebraic stability. Given a Runge–Kutta method with
Butcher tableau

c A

bT

we define the matrices

B = diag(b1, b2, . . . , bs) and M = BA + ATB − bbT .

The method is said to be algebraically stable if the matrices B and
M are both positive semidefinite, i.e., xTBx ≥ 0 and xTMx ≥ 0 for all
x ∈ R

s. Algebraic stability can be seen to ensure that approximations to
solutions of nonlinear systems of differential equations exhibit acceptable
numerical behaviour. For example, the Gauss–Runge–Kutta methods
discussed in the last section are algebraically stable. For further details,
see, for example,

➧ K. Dekker and J.G. Verver, Stability of Runge–Kutta Methods for
Stiff Nonlinear Differential Equations, North-Holland, Amsterdam,
1984.
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Exercises

12.1 Verify that the following functions satisfy a Lipschitz condition
on the respective intervals and find the associated Lipschitz con-
stants:

(a) f(x, y) = 2yx−4 , x ∈ [1,∞) ;
(b) f(x, y) = e−x

2
tan−1 y , x ∈ [1,∞) ;

(c) f(x, y) = 2y(1 + y2)−1(1 + e−|x|) , x ∈ (−∞,∞) .

12.2 Suppose that m is a fixed positive integer. Show that the initial
value problem

y′ = y2m/(2m+1) , y(0) = 0 ,

has infinitely many continuously differentiable solutions. Why
does this not contradict Picard’s Theorem?

12.3 Write down the solution y of the initial value problem

y′ = py + q , y(0) = 1 ,

where p and q are constants. Suppose that the method in the
proof of Picard’s Theorem is used to generate the sequence of
approximations yn(x), n = 0, 1, 2, . . .; show that yn(x) is a poly-
nomial of degree n, and consists of the first n + 1 terms in the
series expansion of y(x) in powers of x.

12.4 Show that Euler’s method fails to approximate the solution
y(x) = (4x/5)5/4 of the initial value problem y′ = y1/5, y(0) =
0. Justify your answer.

Consider approximating the same problem with the implicit
Euler method. Show that there is a solution of the form yn =
(Cnh)5/4, n ≥ 0, with C0 = 0 and C1 = 1 and Cn > 1 for all
n ≥ 2.

12.5 Write down Euler’s method for the solution of the problem

y′ = xe−5x − 5y , y(0) = 0

on the interval [0, 1] with step size h = 1/N . Denoting by yN
the resulting approximation to y(1), show that yN → y(1) as
N → ∞.

12.6 Consider the initial value problem

y′ = ln ln(4 + y2) , x ∈ [0, 1] , y(0) = 1 ,
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and the sequence (yn)Nn=0, N ≥ 1, generated by the Euler
method

yn+1 = yn+h ln ln(4+y2
n) , n = 0, 1, . . . , N−1 , y0 = 1 ,

using the mesh points xn = nh, n = 0, 1, . . . , N , with spacing
h = 1/N .

(i) Let Tn denote the truncation error of Euler’s method for
this initial value problem at the point x = xn. Show that
|Tn| ≤ h/4.

(ii) Verify that

|y(xn+1) − yn+1| ≤ (1 + hL)|y(xn) − yn| + h|Tn|

for n = 0, 1, . . . , N − 1, where L = 1/(2 ln 4).
(iii) Find a positive integer N0, as small as possible, such that

max
0≤n≤N

|y(xn) − yn| ≤ 10−4

whenever N ≥ N0.
12.7 Define the truncation error Tn of the trapezium rule method

yn+1 = yn +
1
2
h (fn+1 + fn)

for the numerical solution of y′ = f(x, y) with y(0) = y0 given,
where fn = f(xn, yn) and h = xn+1 − xn.

By integrating by parts the integral∫ xn+1

xn

(x − xn+1)(x − xn)y′′′(x)dx ,

or otherwise, show that

Tn = − 1
12

h2y′′′(ξn)

for some ξn in the interval (xn, xn+1), where y is the solution of
the initial value problem.

Suppose that f satisfies the Lipschitz condition

|f(x, u) − f(x, v)| ≤ L|u − v|

for all real x, u, v, where L is a positive constant independent
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of x, and that |y′′′(x)| ≤ M for some positive constant M in-
dependent of x. Show that the global error en = y(xn) − yn
satisfies the inequality

|en+1| ≤ |en| +
1
2
hL (|en+1| + |en|) +

1
12

h3M .

For a constant step size h > 0 satisfying hL < 2, deduce that,
if y0 = y(x0), then

|en| ≤
h2M

12L

[(
1 + 1

2hL

1 − 1
2hL

)n
− 1

]
.

12.8 Show that the one-step method defined by

yn+1 = yn + 1
2h(k1 + k2) ,

where

k1 = f(xn, yn) , k2 = f(xn + h, yn + hk1)

is consistent and has truncation error

Tn = 1
6h

2
[
fy(fx + fyf) − 1

2 (fxx + 2fxyf + fyyf
2)
]
+ O(h3) .

12.9 When the classical fourth-order Runge–Kutta method is applied
to the differential equation y′ = λy, where λ is a constant, show
that

yn+1 = (1 + hλ + 1
2h

2λ2 + 1
6h

3λ3 + 1
24h

4λ4)yn .

Compare this with the Taylor series expansion of y(xn+1) =
y(xn + h) about the point x = xn.

12.10 Consider the one-step method

yn+1 = yn + αhf(xn, yn) + βhf(xn + γh, yn + γhf(xn, yn)) ,

where α, β and γ are real parameters and h > 0. Show that the
method is consistent if, and only if, α + β = 1. Show also that
the order of the method cannot exceed 2.

Suppose that a second-order method of the above form is
applied to the initial value problem y′ = −λy, y(0) = 1, where
λ is a positive real number. Show that the sequence (yn)n≥0 is
bounded if, and only if, h ≤ 2

λ . Show further that, for such λ,

|y(xn) − yn| ≤
1
6
λ3h2xn , n ≥ 0 .
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12.11 Find the values of α and β so that the three-step method

yn+3 + α(yn+2 − yn+1) − yn = hβ(fn+2 + fn+1)

has order of accuracy 4, and show that the resulting method is
not zero-stable.

12.12 Consider approximating the initial value problem y′ = f(x, y),
y(0) = y0 by the linear multistep method

yn+1 + byn−1 + ayn−2 = hf(xn, yn)

on the regular mesh xn = nh where a and b are constants.
(i) For a certain (unique) choice of a and b, this method is

consistent. Find these values of a and b and verify that the order
of accuracy is 1.

(ii) Although the method is consistent for the choice of a and
b from part (i), the numerical solution it generates will not, in
general, converge to the solution of the initial value problem
as h → 0, because the method is not zero-stable. Show that
the method is not zero-stable for these a and b, and describe
quantitatively what the unstable solutions will look like for
small h.

12.13 Given that α is a positive real number, consider the linear two-
step method

yn+2 − αyn =
h

3
[f(xn+2, yn+2) + 4f(xn+1, yn+1) + f(xn, yn)] ,

on the mesh {xn: xn = x0 + nh, n = 1, 2, . . . , N} of spacing
h, h > 0. Determine the set of all α such that the method is
zero-stable. Find α such that the order of accuracy is as high
as possible; is the method convergent for this value of α?

12.14 Which of the following linear multistep methods for the solution
of the initial value problem y′ = f(x, y), y(0) given, are zero-
stable?

(a) yn+1 − yn = hfn,
(b) yn+1 + yn − 2yn−1 = h(fn+1 + fn + fn−1),
(c) yn+1 − yn−1 = 1

3h(fn+1 + 4fn + fn−1),
(d) yn+1 − yn = 1

2h(3fn − fn−1),
(e) yn+1 − yn = 1

12h(5fn+1 + 8fn − fn−1).

For the methods under (a) and (c) explore absolute stability
when applied to the differential equation y′ = λy with λ < 0.
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12.15 Determine the order of the linear multistep method

yn+2 − (1 + a)yn+1 + yn =
1
4
h [(3 − a)fn+2 + (1 − 3a)fn]

and investigate its zero-stability and absolute stability.
12.16 Assuming that σ(z) = z2 is the second characteristic polyno-

mial of a linear two-step method, find a quadratic polynomial
ρ(z) such that the order of the method is 2. Is this method con-
vergent? By applying the method to y′ = λy, y(0) = 1, where
λ is a negative real number, show that the method is absolutely
stable for all h > 0.

12.17 Consider the θ-method

yn+1 = yn + h [(1 − θ)fn + θfn+1]

for θ ∈ [0, 1]. Show that the method is A-stable if, and only if,
θ ≥ 1/2.

12.18 Write down an expression for the Lagrange interpolation poly-
nomial of degree 2 for a function x �→ y(x), using the interpo-
lation points xn, xn+1 = xn + h and xn+2 = xn + 2h, h > 0.
Differentiate this polynomial to show that

y′(xn+2) =
1
2h

(3y(xn+2) − 4y(xn+1) + y(xn)) + O(h2) ,

provided that y ∈ C3[xn, xn+2]. Confirm this result by deter-
mining the truncation error of the BDF2 method

3yn+2 − 4yn+1 + yn = 2hfn+2 .

12.19 When the general two-stage implicit Runge–Kutta method is
applied to the single constant-coefficient differential equation
y′ = λy, show that

k1 = [1 + λh(a12 − a22)]λyn/∆ ,

k2 = [1 + λh(a21 − a11)]λyn/∆ ,

where ∆ is the determinant of the matrix I − λhA with

A =
(

a11 a12

a21 a22

)
.

For the method defined by the Butcher tableau
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1
6 (3 − √

3) 1
4

1
12 (3 − 2

√
3)

1
6 (3 +

√
3) 1

12 (3 + 2
√

3) 1
4

1
2

1
2

deduce that yn+1 = R(λh)yn, where

R(λh) =
1 + 1

2λh + 1
12λ

2h2

1 − 1
2λh + 1

12λ
2h2

.

By writing R(z) in the factorised form (z+p)(z+q)/(z−p)(z−q),
deduce that this Runge–Kutta method is A-stable.
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Boundary value problems for ODEs

13.1 Introduction

In the previous chapter we discussed numerical methods for initial value
problems in which all the associated side conditions for a system of
differential equations are prescribed at the same point. Now we go on to
consider problems where these conditions specify values at more than one
point. Typically we require the solution on an interval [a, b], and some
conditions are given at a, and the rest at b, although more complicated
situations are possible, involving three or more points.

We shall begin with the simplest case, of a second-order equation
with one condition given at a and one at b. This problem is sufficient
to introduce the basic ideas, and is of a type which arises quite often in
practice.

We then go on to discuss the shooting method for the solution of more
general problems.

13.2 A model problem

The simplest two-point boundary problem involves the second-order dif-
ferential equation

−y′′ + r(x)y = f(x) , a < x < b , (13.1)

with the boundary conditions

y(a) = A , y(b) = B , (13.2)

where A and B are given real numbers. We shall assume that r and f

are given real-valued functions, defined and continuous on the bounded
closed interval [a, b] of the real line, and that

r(x) ≥ 0 , a ≤ x ≤ b .

361
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The reason for this condition will appear later, in Theorem 13.4.
We shall construct a numerical approximation to the solution on a

uniform mesh of points

xj = a + jh , j = 0, 1, . . . , n , h = (b − a)/n , n ≥ 2 ,

so that x0 = a, xn = b. The second derivative is approximated using
the second central difference defined below.

Definition 13.1 The central difference δy of y is defined by

δy(xj) = y(xj + 1
2h) − y(xj − 1

2h) .

Higher-order differences are defined recursively by

δm+1y(xj) = δ[δmy(xj)] = δmy(xj + 1
2h) − δmy(xj − 1

2h) .

In particular, the second central difference may be written

δ2y(xj) = δy(xj + 1
2h) − δy(xj − 1

2h)

= y(xj + h) − 2y(xj) + y(xj − h) .

Theorem 13.1 (i) Suppose that y ∈ C4[x − h, x + h], i.e., that y has
continuous fourth derivative on the interval [x − h, x + h]. Then, there
exists a number ξ in (x − h, x + h) such that

δ2y(x)
h2

= y′′(x) + 1
12h

2yiv(ξ) .

(ii) Suppose that y ∈ C6[x − h, x + h]; then, there exists a number η

in (x − h, x + h) such that

δ2y(x)
h2

= y′′(x) + 1
12h

2yiv(x) + 1
360h

4yvi(η) . (13.3)

Proof (i) Taylor’s Theorem shows that there exist numbers ξ1 and ξ2 in
the intervals (x − h, x) and (x, x + h), respectively, such that

y(x − h) = y(x) − hy′(x) + 1
2h

2y′′(x) − 1
6h

3y′′′(x) + 1
24h

4yiv(ξ1) ,

y(x + h) = y(x) + hy′(x) + 1
2h

2y′′(x) + 1
6h

3y′′′(x) + 1
24h

4yiv(ξ2) .

}

(13.4)

Since yiv is continuous on [x − h, x + h], there is a number ξ in (ξ1, ξ2),
and thus also in (x − h, x + h), such that

1
2 (yiv(ξ1) + yiv(ξ2)) = yiv(ξ) .
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The required result is now obtained by adding the two equations (13.4)
and dividing by h2.

(ii) The proof is completely analogous, and is left to the reader as an
exercise. (See Exercise 1.)

We can now use the central difference approximation to construct
the numerical solution. Writing Yj for the numerical approximation to
y(xj), we approximate the differential equation by

−δ2Yj
h2

+ rjYj = fj , j = 1, 2, . . . , n − 1 , (13.5)

where we have used the notation rj = r(xj), fj = f(xj). Now, (13.5)
is a system of n − 1 linear algebraic equations for the n − 1 unknowns
Yj , j = 1, 2, . . . , n − 1, with the boundary conditions specifying the
values of Y0 and Yn,

Y0 = A , Yn = B . (13.6)

The system may be written in matrix form as

MY = g ,

where Y, g ∈ R
n−1 and, for n ≥ 4, the matrix M ∈ R

(n−1)×(n−1) is
tridiagonal. Here Y = (Y1, . . . , Yn−1)T, the nonzero elements of M are

Mjj = 2/h2 + rj , Mj j−1 = Mj j+1 = −1/h2 , (13.7)

and the elements of the column vector g on the right-hand side are

g1 = f1 + A/h2, gn−1 = fn−1 + B/h2, gj = fj , j = 2, 3, . . . , n − 2 .

Note how the known boundary values Y0 and Yn have been transferred to
the right-hand side, and appear in the first and last elements of g. The
solution of this system is very easy, using the algorithm for tridiagonal
matrices described in Section 3.3. Using the fact that r(x) ≥ 0, we see
that the off-diagonal elements of M are negative, the diagonal elements
are positive, and in each row the diagonal element is at least as large
as the sum of absolute values of the off-diagonal elements. Theorem 3.4
implies that no row interchanges are needed in the calculation, and that
the matrix M is nonsingular. The calculation is therefore very straight-
forward and efficient, and requires very little computational time, even
for a mesh which may contain several hundred points.
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13.3 Error analysis

Having obtained the numerical solution we must now analyse its accu-
racy. In the same way as for initial value problems, we begin by finding
the truncation error.

Definition 13.2 The truncation error of the central difference ap-
proximation to the problem (13.1) is

Tj = −δ2y(xj)
h2

+ rjy(xj) − fj , j = 1, 2, . . . , n − 1 ,

where y is the exact solution of (13.1), (13.2).

Theorem 13.2 Suppose that the solution y to the boundary value prob-
lem (13.1), (13.2) has a continuous fourth derivative on [a, b]. Then,
the truncation error may be written

Tj = − 1
12h

2yiv(ξj) , (13.8)

for some value of ξj in the interval (xj−1, xj+1), j = 1, 2, . . . , n−1. The
truncation error is bounded by T , where

|Tj | ≤ T = 1
12h

2M4 , j = 1, 2, . . . , n − 1 ,

and

M4 = max
x∈[a,b]

|yiv(x)| . (13.9)

Proof The expression for Tj follows from the substitution of the expres-
sion for δ2y(xj) given by Theorem 13.1 into the definition of Tj , and the
use of the fact that y is the solution of the differential equation. The
proof of the bound for Tj is then immediate; since yiv is known to be
continuous on [a, b] it is bounded on [a, b], so M4 exists.

In order to simplify writing, we define

L(uj) = −δ2uj
h2

+ rjuj , j = 1, 2, . . . , n − 1,

for any set of real numbers {u0, u1, . . . , un}. The global error in the
numerical solution is defined by

ej = y(xj) − Yj , j = 0, 1, . . . , n .
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Now, y(xj) and Yj satisfy

L(y(xj)) = fj + Tj , j = 1, 2, . . . , n − 1 ,

L(Yj) = fj , j = 1, 2, . . . , n − 1 ,

from the definition of truncation error and (13.5); hence, by subtraction,

L(ej) = Tj , j = 1, 2, . . . , n − 1 ,

with the boundary conditions e0 = en = 0. We must now use the bound
on Tj to derive a bound on the error ej . This will be achieved by means
of the following theorem.

Theorem 13.3 (Maximum Principle) Let aj , bj , cj, j = 0, 1, . . . , n,
be positive real numbers such that bj ≥ aj + cj, and suppose that uj,
j = 0, 1, . . . , n, are real numbers such that

−ajuj−1 + bjuj − cjuj+1 ≤ 0 , j = 1, 2, . . . , n − 1 .

Then, uj ≤ K, j = 0, 1, . . . , n, where K = max{u0, un, 0}.

Proof Let ur = max{u0, u1, . . . , un}; then if r = 0, r = n, or ur ≤ 0
the result is trivial. Suppose then that 1 ≤ r ≤ n − 1, and that ur > 0.
Since ur is the maximum of the uj , we know that

ur ≥ ur−1 , ur ≥ ur+1 .

Hence

brur ≤ arur−1 + crur+1

≤ arur + crur

≤ brur ,

since ur > 0. This means that equality holds throughout, so that ur−1 =
ur = ur+1. We can then apply the same argument to both ur−1 and
ur+1, continuing until we find that either ur = un or ur = u0. Thus, in
this case u0 = un = max{u0, u1, . . . , un}, as required.

Theorem 13.4 Suppose that the solution y of the boundary value prob-
lem (13.1), (13.2) has a continuous fourth derivative on [a, b], and that
Yj, j = 0, 1, . . . , n, is the solution of the central difference approximation
(13.5), (13.6). Then,

max
0≤j≤n

|y(xj) − Yj | ≤ 1
96h

2(b − a)2M4 . (13.10)
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Proof Let ej = y(xj) − Yj . We have already seen that L(ej) = Tj ,
j = 1, 2, . . . , n − 1. Defining

ϕj = C
{
(2j − n)2h2 − n2h2

}
, j = 0, 1, . . . , n , (13.11)

where C is a constant, we see that

L(ϕj) = −C
{
(2j − 2 − n)2 − 2(2j − n)2 + (2j + 2 − n)2

}
+ rjϕj

= −8C + rjϕj , j = 1, 2, . . . , n − 1 .

Hence

L(ej + ϕj) = Tj − 8C + rjϕj , j = 1, 2, . . . , n − 1 .

If we choose C = T/8 with T = 1
12h

2M4, we see that L(ej + ϕj) ≤ 0,
since |Tj | ≤ T , rj ≥ 0 and ϕj ≤ 0, and L satisfies the conditions of the
Maximum Principle. Now,

e0 + ϕ0 = en + ϕn = 0 ,

so that, according to Theorem 13.3, ej + ϕj ≤ 0 for j = 0, 1, . . . , n.
However, −Cn2h2 ≤ ϕj ≤ 0, so we have the result

ej ≤ Cn2h2 = 1
8 (b − a)2T = 1

96h
2(b − a)2M4 , j = 0, 1, . . . , n .

By applying the same argument to L(−ej + ϕj) we find that

−ej ≤ 1
96h

2(b − a)2M4 , j = 0, 1, . . . , n .

Combining these upper bounds for ej and −ej gives the required result.

The function ϕ defined by (13.11) is called a comparison function.
An alternative proof of Theorem 13.4, based on the properties of mono-
tone matrices, can be given by using the result in Exercise 2. Notice
that the condition r(x) ≥ 0 is used in the application of the Maximum
Principle in the above proof.

This theorem shows that, provided the solution y has a continuous
fourth derivative, the numerical method is convergent, that is

max
0≤j≤n

|y(xj) − Yj | → 0 as n → ∞

(or, equivalently, as h = (b−a)/n → 0). This means that we can obtain
any required accuracy by choosing n sufficiently large.



13.4 Boundary conditions involving a derivative 367

13.4 Boundary conditions involving a derivative

The same differential equation (13.1) may be associated with boundary
conditions involving the first derivative of the solution. Suppose, for
example, that we are given real numbers α > 0, A and B. Consider the
differential equation (13.1) together with the boundary conditions

y′(a) − αy(a) = A , y(b) = B . (13.12)

The condition at x = a may be approximated in various ways; we shall
introduce an extra mesh point x−1 outside the interval and use the
approximate version

Y1 − Y−1

2h
− αY0 = A .

This gives

Y−1 = Y1 − 2hαY0 − 2hA .

Writing the same central difference approximation (13.5) as before, but
now for j = 0, 1, . . . , n − 1, we can eliminate the extra unknown Y−1

from the equation at j = 0 to give[
2(1 + αh)

h2
+ r0

]
Y0 − 2

h2
Y1 = f0 − 2

h
A .

Together with (13.5), for j = 1, 2, . . . , n− 1, we now have a system of n
equations for the unknowns Yj , j = 0, 1, . . . , n − 1. There are one more
equation and one more unknown than before, but the new matrix is
still tridiagonal, and also diagonally dominant because of the condition
α > 0. The computation is again very straightforward.

Theorem 13.5 Suppose that y ∈ C3[x − h, x + h]; then, there exists a
real number χ in (x − h, x + h) such that

y(x + h) − y(x − h)
2h

= y′(x) + 1
6h

2y′′′(χ) . (13.13)

Proof Taylor’s Theorem shows that there exist χ1 ∈ (x − h, x) and
χ2 ∈ (x, x + h) such that

y(x − h) = y(x) − hy′(x) + 1
2h

2y′′(x) − 1
6h

3y′′′(χ1) ,

y(x + h) = y(x) + hy′(x) + 1
2h

2y′′(x) + 1
6h

3y′′′(χ2) .

We subtract the first equality from the second, and the result follows as
in the proof of Theorem 13.1.



368 13 Boundary value problems for ODEs

Note that the approximation to y′(x) at x = x0 may be written
1
2 [δy(x0 + 1

2h) + δy(x0 − 1
2h)]

h
.

For j = 1, 2, . . . , n − 1, we define the truncation error Tj as in Def-
inition 13.2. In addition, since we shall now also incur an error in the
approximation of the boundary condition at x = a, we define

T0 =
[
2(1 + αh)

h2
+ r0

]
y(0) − 2

h2
y(h) − f0 +

2
h
A .

The aim of our next result is to quantify the size of the truncation error
in terms of the mesh size h.

Theorem 13.6 Suppose that the solution y to the boundary value prob-
lem (13.1), (13.2) has a continuous fourth derivative on the closed in-
terval [a − h, b]. Then, the truncation error of the central difference
approximation to (13.1) with boundary conditions (13.12) may be writ-
ten

Tj = − 1
12h

2yiv(ξj) , j = 1, 2, . . . , n − 1 ,

T0 = − 1
12h

2yiv(ξ0) − 1
3hy

′′′(χ) ,

for some value of ξj in the interval (xj−1, xj+1), 1 ≤ j ≤ n − 1, and
some value χ in the interval (x−1, x1) where x−1 = a − h.

Proof For j = 1, 2, . . . , n−1, this is the same result as in Theorem 13.2.
When j = 0, we find that

T0 =
[
2(1 + αh)

h2
+ r0

]
y(0) − 2

h2
y(h) − f0 +

2
h
A

= −y(h) − 2y(0) + y(−h)
h2

+ r(0)y(0) − f(0)

− 2
h

[
y(h) − y(−h)

2h
− αy(0) − A

]
= − 1

12h
2yiv(ξ0) − 2

h
1
6h

2y′′′(χ) ,

where we have used Theorem 13.5.

Theorem 13.7 Suppose that the solution y of (13.1) with the boundary
conditions (13.12) has a continuous fourth derivative on the interval
[a−h, b]; then, the numerical solution obtained from the central difference
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approximation satisfies

max
0≤j≤n

|y(xj) − Yj | ≤ h2
{

1
24 (b − a)2M4 + 1

6 (b − a)M3

}
.

Proof The proof is very similar to that of Theorem 13.4, but requires
the use of a more complicated comparison function ϕj . Let us define

L∗(uj) = −δ2uj
h2

+ rjuj , j = 1, 2, . . . , n − 1 ,

L∗(u0) =
[
2(1 + αh)

h2
+ r0

]
u0 − 2

h2
u1 ,

for any set of real numbers {u0, u1, . . . , un}, and let

ϕj = Cj2h2 + Djh + E , j = 0, 1, . . . , n ,

where C,D and E are constants to be determined. Then, with ej =
y(xj) − Yj , as in the proof of Theorem 13.4, we see that

L∗(ej) = Tj , j = 0, 1, . . . , n − 1 .

A simple calculation shows that

L∗(ϕj) = −2C + rjϕj , j = 1, 2, . . . , n − 1 ,

L∗(ϕ0) = −2C − 2D/h + [2α/h + r0]E .

Hence

L∗(ej + ϕj) = − 1
12h

2yiv(ξj) − 2C + rjϕj , j = 1, 2, . . . , n − 1 ,

L∗(e0 + ϕ0) = − 1
12h

2yiv(ξ0) − 1
3hy

′′′(χ)

−2C − 2D/h + [2α/h + r0]E .

If we now choose

C = 1
24h

2M4 , D = 1
6h

2M3 , E = −C(b − a)2 − D(b − a) ,

it is easy to check that

ϕj ≤ 0 , j = 0, 1, . . . , n ,

L∗(ej + ϕj) ≤ 0 , j = 0, 1, . . . , n − 1 .

The Maximum Principle then applies, and we deduce that

ej + ϕj ≤ max{e0 + ϕ0, en + ϕn, 0} , j = 0, 1, . . . , n .

We see at once that en = ϕn = 0 and ϕ0 ≤ 0, but in this case e0 is not
zero. Therefore, all we can conclude for the moment is that

ej + ϕj ≤ max{e0 + ϕ0, 0} , j = 0, 1, . . . , n . (13.14)
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In particular,

e1 + ϕ1 ≤ max{e0 + ϕ0, 0} . (13.15)

However, L∗(e0 + ϕ0) ≤ 0; thus, by the definition of L∗(e0 + ϕ0),

e0 + ϕ0 ≤ 2
2(1 + αh) + h2r0

(e1 + ϕ1) .

On writing δ = 2/(2(1 + αh) + h2r0) and noting that, since α > 0 and
r0 ≥ 0, we have 0 < δ < 1, it follows that

e0 + ϕ0 ≤ δ(e1 + ϕ1) . (13.16)

Inserting this inequality into the left-hand side of (13.15), we find that

e0 + ϕ0 ≤ max{δ(e0 + ϕ0), 0} .

If e0+ϕ0 were positive, this inequality and the fact that 0 < δ < 1 would
imply e0 + ϕ0 ≤ 0, leading to a contradiction. Therefore, e0 + ϕ0 ≤ 0.
Returning with this information to (13.14), we conclude that ej+ϕj ≤ 0
for j = 0, 1, . . . , n, and the rest of the proof then follows as in the proof
of Theorem 13.1.

13.5 The general self-adjoint problem

The general self-adjoint boundary value problem is

− d
dx

(
p(x)

dy
dx

)
+ r(x)y = f(x) , a < x < b , (13.17)

where r and f are real-valued functions, defined and continuous on [a, b],
p is a real-valued continuously differentiable function on [a, b], r(x) ≥ 0
and p(x) ≥ c0 > 0. We shall consider only the case where the boundary
conditions prescribe the values of y at each end,

y(a) = A , y(b) = B . (13.18)

The central difference approximation to the equation (13.17) may be
written

−δ(pj δYj)
h2

+ rjYj = fj , j = 1, 2, . . . , n − 1 ,

or, in detail,

−
pj+1/2(Yj+1 − Yj) − pj−1/2(Yj − Yj−1)

h2
+ rjYj = fj , (13.19)
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for j = 1, 2, . . . , n, and is supplemented by the boundary conditions

Y0 = A , Yn = B . (13.20)

It is easy to see that this represents a system of linear equations for
the unknowns Y1, Y2, . . . , Yn−1, and that the matrix of the system is
tridiagonal and diagonally dominant, just as it was in the special case
(13.1), which corresponds to p(x) ≡ 1. The solution of the system is
therefore a very simple matter.

Next, we consider the error analysis of the difference scheme (13.19),
(13.20). We begin by quantifying the size of the truncation error

Tj = −δ(pj δy(xj))
h2

+ rjy(xj) − fj , j = 1, 2, . . . , n − 1 ,

in terms of the mesh size h.

Lemma 13.1 Suppose that p ∈ C3[a, b] and y ∈ C4[a, b]. The truncation
error Tj of the central difference approximation (13.19) then satisfies

|Tj | ≤ T = 1
24h

4 max
x∈[a,b]

{
|(py′)′′′(x)| + |p′y′′′(x)| + 2|pyiv(x)|

}
,

for j = 1, 2, . . . , n − 1.

Proof By expanding in Taylor series as we have done before, we find
that

pj+1/2[y(xj+1) − y(xj)] = pj+1/2[hy′j+1/2 + 1
24h

3y′′′(ξ1)] ,

pj−1/2[y(xj) − y(xj−1)] = pj−1/2[hy′j−1/2 + 1
24h

3y′′′(ξ2)] ,

where ξ1 ∈ (xj , xj+1) and ξ2 ∈ (xj−1, xj). The first term in the difference
of these expressions gives, in the same way,

h[pj+1/2y
′(xj+1/2)−pj−1/2y

′(xj−1/2)] = h[h(py′)′(xj)+ 1
24h

3(py′)′′′(ξ3)]

where ξ3 ∈ (xj−1/2, xj+1/2). For the other term we can write

1
24h

3|pj+1/2y
′′′(ξ1) − pj−1/2y

′′′(ξ2)|
= 1

24h
3|(pj+1/2 − pj−1/2)y′′′(ξ1) + pj−1/2[y′′′(ξ1) − y′′′(ξ2)]|

≤ 1
24h

3
{
|hp′(ξ4)y′′′(ξ1)| + |pj−1/22hyiv(ξ5)|

}
,

since |ξ1 − ξ2| < 2h. Here, ξ4 ∈ (xj−1/2, xj+1/2) and ξ5 lies between ξ1

and ξ2. The required bound follows immediately.
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As in the proof of Theorem 13.4, we can now derive a bound on the
global error in the numerical solution in terms of the truncation error
by using the Maximum Principle. The only difficulty in extending that
theorem to the more general self-adjoint problem lies in the construction
of a comparison function corresponding to (13.11). The general case
requires some detailed analysis, which can be simplified under certain
conditions on the function p, for example if p is monotonic.

Lemma 13.2 Suppose that p and r are continuous functions defined on
[a, b], p is monotonic increasing on [a, b], p(x) ≥ c0 > 0, r(x) ≥ 0, and
define

L(uj) = −δ(p δuj)
h2

+ rjuj , j = 1, 2, . . . , n − 1 ,

for any set of real numbers {u0, u1, . . . , un}. Further, let

ϕj = C(j2 − n2)h2 , j = 0, 1, . . . , n ,

where C is a positive constant. Then,

L(ϕj) ≤ −2c0C , j = 1, 2, . . . , n − 1 .

Proof It follows from the definition that

L(ϕj) = −pj+1/2C(2j + 1) + pj−1/2C(2j − 1) + C(j2 − n2)h2rj

= −C[(pj+1/2 + pj−1/2) + 2j(pj+1/2 − pj−1/2) + h2(n2 − j2)rj ]

≤ −2c0C ,

for j = 1, 2, . . . , n − 1, as required.

Note that we have imposed various conditions on the problem, which
are usually necessary, though some can be slightly relaxed. The condi-
tion in this lemma, that p should be monotonic increasing on [a, b], is
only needed to simplify the subsequent proof. The main result is true
much more generally. We leave it as an exercise to derive the same result
under the assumption that p is monotonic decreasing on [a, b].

Theorem 13.8 Suppose that p and r are continuous functions defined
on [a, b], p is monotonic increasing on [a, b], p(x) ≥ c0 > 0, r(x) ≥ 0.
Assume further that the solution y of (13.17), (13.18) has a continuous
fourth derivative on [a, b], that p has a continuous third derivative, and
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that Yj, j = 0, 1, . . . , n, is the solution of the central difference approxi-
mation (13.19), (13.20). Then, with T as in Lemma 13.1,

max
0≤j≤n

|y(xj) − Yj | ≤ 1
2c0

T . (13.21)

Proof The proof of this theorem follows that of Theorem 13.4, using the
bound from Lemma 13.1 on the truncation error and the comparison
function ϕj from Lemma 13.2. The details are left as an exercise.

13.6 The Sturm–Liouville eigenvalue problem

Suppose that r is a real-valued function, defined and continuous on the
closed interval [a, b], p is a real-valued function, defined and continuously
differentiable on [a, b], and r(x) ≥ 0, p(x) ≥ c0 > 0 for all x ∈ [a, b]. The
differential equation

− d
dx

(
p(x)

dy
dx

)
+ r(x)y = λy , a < x < b , (13.22)

with homogeneous boundary conditions y(a) = y(b) = 0, has only the
trivial solution y ≡ 0, except for an infinite sequence of positive eigenval-
ues λ = λm, m = 1, 2, . . .. We shall now consider a numerical method for
finding these eigenvalues and the corresponding eigenfunctions, y(m)(x),
m = 1, 2, . . ..

In the simple case where p(x) ≡ 1 and r(x) ≡ 0 the solution to
this problem is, of course, λm = [mπ/(b − a)]2, y(m)(x) = A sinmπt,
m = 1, 2, . . . , where A is a nonzero constant and t = (x − a)/(b − a).

Using the same finite difference approximation as in the previous sec-
tion, we obtain the equations

−
pj+1/2(Yj+1 − Yj) − pj−1/2(Yj − Yj−1)

h2
+ rjYj = ΛYj ,

j = 1, 2, . . . , n − 1 .

Together with the boundary conditions Y0 = Yn = 0, this shows that Λ
is an eigenvalue of a symmetric tridiagonal matrix M whose entries are

Mjj =
pj+1/2 + pj−1/2

h2
+ rj , 1 ≤ j ≤ n − 1 ,

Mj j−1 = −
pj−1/2

h2
, 2 ≤ j ≤ n , Mj j+1 = −

pj+1/2

h2
, 1 ≤ j ≤ n − 1 ,



374 13 Boundary value problems for ODEs

and the approximate function values Yj are the elements of the corre-
sponding eigenvector. This algebraic eigenvalue problem is easily solved
by the method described in Chapter 5.

The boundary value problems which we have discussed so far have all
had a unique solution. The eigenvalue problem (13.22) has an infinite
number of solutions, and the mesh used in the numerical computation
has to be chosen to adequately represent the eigenfunctions required –
the computation can obviously only find a finite number of them. The
matrix M has n − 1 eigenvalues and eigenvectors and, as we shall see,
it will normally give a good approximation to the first few eigenvalues,
λ1, λ2, . . ., and a much less accurate approximation to λn−1.

To analyse the error in the eigenvalue we proceed as before, by defining
the truncation error

Tj = −
pj+1/2(yj+1 − yj) − pj−1/2(yj − yj−1)

h2
+ rjyj − λyj ,

j = 1, 2, . . . , n − 1 ,

where yj = y(xj). These equations can now be written

(M − ΛI)Y = 0 ,

(M − λI)y = T ,

where

Y = (Y1, . . . , Yn−1)T ,

y = (y1, . . . , yn−1)T ,

T = (T1, . . . , Tn−1)T .

Theorem 5.15 of Chapter 5 applies to this problem, and shows that one
of the eigenvalues, Λm, of the matrix M satisfies

|λm − Λm| ≤ ‖T‖2/‖y‖2 . (13.23)

In the simpler case where p(x) ≡ 1 and r(x) ≡ 0 the truncation error is

Tj = − 1
12h

2yiv(ξj) , ξj ∈ (xj−1, xj+1) ,

so the numerical method has evaluated the eigenvalue with error less
than

1
12h

2



n−1∑
j=1

[yiv(ξj)]2




1/2 

n−1∑
j=1

[y(xj)]2




−1/2

.
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Since the mth eigenfunction y(m) is given by

y(x) = y(m)(x) = sin(mπ(x − a)/(b − a)) , x ∈ (a, b) ,

we see that

yiv(x) =
[

mπ

b − a

]4

y(x) , x ∈ (a, b) .

This shows that, for example, the error in the tenth eigenvalue, corre-
sponding to m = 10, is likely to be about 104 times larger than the error
in the first eigenvalue; more generally, to evaluate higher eigenvalues of
the equation will require the use of a smaller interval h.

13.7 The shooting method

The methods we have described for the linear boundary value problem
may be extended to nonlinear differential equations. We shall not discuss
how this is done; instead, we shall describe an alternative approach,
called the shooting method. We shall consider the nonlinear model
problem

y′′ = f(x, y) , a < x < b , y(a) = A , y(b) = B ,

where we assume that the function f(x, y) is continuous and differen-
tiable, and that

∂f

∂y
(x, y) ≥ 0 , a < x < b , y ∈ R .

The central idea of the method is to replace the boundary value prob-
lem under consideration by an initial value problem of the form

y′′ = f(x, y) , a < x ≤ b , y(a) = A , y′(a) = t ,

where t is to be chosen in such a way that y(b) = B. This can be thought
of as a problem of trying to determine the angle of inclination tan−1 t

of a loaded gun, so that, when shot from height A at the point x = a,
the bullet hits the target placed at height B at the point x = b. Hence
the name, shooting method.

Once the boundary value problem has been transformed into such an
‘equivalent’ initial value problem, any of the methods for the numerical
solution of initial value problems discussed in Chapter 12 can be applied
to find a numerical solution. Thus, in particular, the costly exercise of
solving a large system of nonlinear equations, arising from a direct finite
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difference approximation of the nonlinear boundary value problem, can
be completely avoided.

If we write

y′(a) = t ,

a numerical solution of the differential equation with the initial condi-
tions y(a) = A, y′(a) = t can be obtained by any of the methods of
Chapter 12. This solution will depend on t, and we may write it as
y(x; t). In particular the value at x = b will be a function of t,

y(b; t) = ψ(t) . (13.24)

The solution of the nonlinear boundary value problem therefore reduces
to the determination of the value of t for which the boundary condition
at x = b is also satisfied, i.e.,

ψ(t) − B = 0 .

There are a number of well-known methods for the solution of equations
of this form; Newton’s method is an obvious example. Generally, we
shall not, of course, have a closed form expression for the function ψ(t),
in general, but this is not necessary; all that is needed is a numerical
algorithm to calculate the value of ψ(t) for a given value of t, and this we
have. To use Newton’s method we shall also need to be able to calculate
the value of ψ′(t), and this is easily done.

The function y(x; t) is defined, for all t, as the solution of the initial
value problem

y′′(x; t) = f(x, y(x; t)) , y(a; t) = A , y′(a; t) = t , (13.25)

where ′ and ′′ indicate differentiation with respect to the variable x.
We can differentiate these throughout with respect to t, giving

∂

∂t
y′′(x; t) =

∂f

∂y
(x, y(x; t))

∂y

∂t
(x; t) ,

∂y

∂t
(a; t) = 0 ,

∂y′

∂t
(a; t) = 1 .

Writing

w(x, t) =
∂y

∂t
(x; t) ,

and interchanging the order of differentiation, we find that w(x; t) may
be obtained as the solution of the initial value problem

w′′(x; t) = w(x; t)
∂f

∂y
(x, y(x; t)) , w(a; t) = 0 , w′(a; t) = 1 .

(13.26)
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By virtue of (13.24), the required derivative is then given by

ψ′(t) = w(b, t) .

To implement this method, it is convenient to solve the two initial
value problems, (13.25) and (13.26), in tandem, by writing them as a
system of four simultaneous first-order differential equations:

u′
1(x; t) = u2(x; t) ,

u′
2(x; t) = f(x, u1(x; t)) ,

u′
3(x; t) = u4(x; t) ,

u′
4(x; t) = u3(x; t) ∂f

∂u1
(x, u1(x; t)) ,




(13.27)

with the initial conditions

u1(a; t) = A , u2(a; t) = t , u3(a; t) = 0 , u4(a; t) = 1 ,

where u1(x; t) denotes y(x; t), u3(x; y) signifies w(x; t), and u2 and u4

are defined by u2 = u′
1 = y′ and u4 = u′

3 = w′.
Having obtained a numerical solution of this system of differential

equations for some chosen value of t, t(k) say, Newton’s method gives,
as the next, improved, value for t,

t(k+1) = t(k) − ψ(t(k)) − B

ψ′(t(k))
= t(k) − u1(b, t(k)) − B

u3(b, t(k))
, k = 0, 1, . . . ,

iterating until a certain number of decimal digits have converged.

Theorem 13.9 Suppose that a numerical algorithm for the solution of
the system of differential equations (13.27) gives the result vi,j(t), the
numerical approximation to ui(xj ; t), i = 1, 2, 3, 4, j = 1, 2, . . . , n, where
the error satisfies

max
1≤j≤n

|ui(xj ; t) − vi,j(t)| ≤ C(t)hs , i = 1, 2, 3, 4 ,

for some s > 0; here C(t) depends on bounds on the derivatives of y and
f(x, y), and on t. Suppose also that the Newton iteration is performed
until

|v1,n(t(k)) − B| ≤ ε .

Then, v1,j(t(k)) is an approximation to the solution of the boundary value
problem which satisfies

max
1≤j≤n

|y(xj) − v1,j(tk)| ≤ 2C(t(k))hs + ε .
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Proof Suppose that the solution of the system of differential equations
with t = t(k) is ui(x; t(k)), i = 1, 2, 3, 4, and the corresponding numerical
solution is vi,j(t(k)), i = 1, 2, 3, 4, j = 1, 2, . . . , n; then

|ui(xj ; t(k)) − vi,j(t(k))| ≤ C(t(k))hs .

Moreover |v1,n(t(k)) − B| ≤ ε, so that

|u1(b; t(k)) − B| ≤ |u1(b; t(k)) − v1,n(t(k))| + |v1,n(t(k)) − B|
≤ C(t(k))hs + ε . (13.28)

Let us write η(x; t) = y(x) − u1(x; t); by subtraction we see that

η′′(x; t) = y′′(x) − u′′
1(x; t)

= f(x, y(x)) − f(x, u1(x, t))

= η(x; t)
∂f

∂y
(x, ξ(x; t)) ,

where ξ(x; t) lies between u1(x; t) and y(x).
Suppose that η′(a; t) > 0; since η(a; t) = 0, there is some interval to

the right of a in which η(x; t) > 0. Then, either η(x; t) > 0 for the whole
of (a, b], or there is a value c such that a < c < b and η(c; t) = 0. In
the latter case, η′(x; t) must vanish at some point x = d between a and
c. However, in the interval [a, d], η(x; t) > 0 and ∂f/∂y ≥ 0, so that
η′′(x; t) > 0. Consequently, in the interval [a, d], η′(x; t) > η′(a; t) > 0,
and we have a contradiction. Thus, η(x; t) > 0 for all a < x ≤ b. It then
follows that η′′(x; t), and hence also η′(x; t) are positive on the whole
interval [a, b], which means that x �→ η(x; t) is monotonic increasing
on [a, b]. If we had begun with the assumption that η′(a; t) < 0 an
analogous argument shows that x �→ η(x; t) would have been monotonic
decreasing on [a, b]. It is left to the reader to discuss the trivial case
when η′(a, t) = 0.

In any case,

|η(x; t)| ≤ |η(b; t)| , a ≤ x ≤ b ,

and therefore, since y(b) = B and recalling (13.28),

|y(x) − u1(x; t(k))| ≤ |B − u1(b; t(k))| ≤ C(t(k))hs + ε .

Thus, finally,

|y(xj) − v1,j(t(k))| ≤ |y(xj) − u1(xj ; t(k))| + |u1(xj ; t(k)) − v1,j(t(k))|
≤ C(t(k))hs + ε + C(t(k))hs , j = 1, 2, . . . , n ,

and hence the desired bound.
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Fig. 13.1. The function t �→ ψ(t).

The shooting method is an example of a technique which can be ap-
plied to much more general problems, including systems of differential
equations of any order, with some boundary conditions specified at each
end of the interval. The condition ∂f/∂y ≥ 0 is restrictive, and may
often not be satisfied in practical problems. Note that if f(x, y) is linear
in y, of the form f(x, y) = r(x)y+g(x), this condition is the same as the
condition r(x) ≥ 0 imposed on the model problem in (13.2). Perhaps
the simplest example of a nonlinear two-point boundary value problem
is

y′′ = y2 , y(−1) = y(1) = 1 , (13.29)

where ∂f/∂y = 2y, which does not satisfy the condition ∂f/∂y ≥ 0,
y ∈ R. In fact, problem (13.29) has two solutions, one of which is
positive, and the other takes negative values around x = 0.

Figure 13.1 shows a graph of the corresponding function t �→ ψ(t)
defined in (13.24), over the range −12 ≤ t ≤ 0; outside this range
the function ψ tends quite rapidly to +∞. This shows clearly the two
solutions to the boundary value problem, given by the two values of t at
which ψ(t) = 1. The two solutions are displayed in Figure 13.2.

For the positive solution it is reasonable to suppose that the above
proof could be modified so that it requires only that ∂f/∂y is positive
for values of y in the neighbourhood of the solution, and the error bound
would then hold, at least if h and ε were sufficiently small. The analysis
of the error of the other solution, which takes negative values, will be
much more difficult, as our proof relies heavily on the monotonicity of
solutions of the linearised equation.
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Fig. 13.2. The two solutions of the nonlinear boundary value problem (13.29).

13.8 Notes

The following books are standard texts on the subject of numerical ap-
proximation of boundary value problems:

➧ H.B. Keller, Numerical Methods for Two-Point Boundary Value
Problems, Reprint of the 1968 original published by Blaisdell, Dover,
New York, 1992.

➧ H.B. Keller, Numerical Solution of Two-Point Boundary Value
Problems, SIAM, Philadelphia, fourth printing, 1990.

A more recent survey of the subject is found in

➧ U.M. Ascher, R.M.M. Mattheij and R.D. Russell, Numeri-
cal Solution of Boundary Value Problems for Ordinary Differential
Equations, Corrected reprint of the 1988 original, Classics in Applied
Mathematics, 13, SIAM, Philadelphia, 1995.

In practical implementations of the shooting method into mathematical
software (see, for example, Appendix A in the Ascher et al. book), the
interval [a, b] is subdivided into smaller intervals on each of which the
shooting method is applied with appropriately chosen initial values. The
‘initial’ conditions on the subintervals are then simultaneously adjusted
in order to satisfy the boundary conditions and appropriate continuity
conditions at the points of the subdivision. From the practical viewpoint,
this extension of the basic shooting method considered in this chapter
is extremely important: the various difficulties which may arise in the
implementation of the basic method (such as, for example, growth of the
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solution to the initial value problem over the interval [a, b], leading to
loss of accuracy in the solution of the equation ψ(t) = B) are discussed,
for example, in Section 2.4 of the 1992 book by Keller.

Sturm–Liouville problems originated in a paper of Jacques Charles
François Sturm: Sur les équations différentielles linéaires du second
ordre, J. Math. Pures Appl. 1, 106–186, 1836, in Joseph Liouville’s
newly founded journal. Sturm’s paper was followed by a series of articles
by Sturm and Liouville in subsequent volumes of the journal. They ex-
amined general linear second-order differential equations, the properties
of their eigenvalues, the behaviour of the eigenfunctions and the series
expansion of arbitrary functions in terms of these eigenfunctions. An ex-
tensive survey of the theory and numerical analysis of Sturm–Liouville
problems can be found in

➧ John D. Pryce, Numerical Solution for Sturm–Liouville Problems,
Oxford University Press Monographs in Numerical Analysis, Claren-
don Press, Oxford, 1993.

See also Section 11.3, page 478, of the Ascher et al. book cited above.

Exercises

13.1 Suppose that y ∈ C6[x− h, x + h]; show that there exists a real
number η in (x − h, x + h) such that

δ2y(x)
h2

= y′′(x) + 1
12h

2yiv(x) + 1
360h

4yvi(η) .

13.2 Use Theorem 3.6 to show that the matrix M in (13.7) is mono-
tone. Use the result of Exercise 4 to show that ‖M−1‖∞ ≤ 1

8 .
13.3 On the interval [a, b] the differential equation

−y′′ + f(x)y = g(x)

is approximated by

−δ2yj
h2

+ β−1yj−1 + β0yj + β1yj+1 = β−1gj−1 + β0gj + β1gj+1 ,

where β−1, β0 and β1 are constants. Assuming that the solution
y has the appropriate number of continuous derivatives, show
that the truncation error of this approximation may be written
as follows:
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(i) if β−1 + β0 + β1 �= 1, then

Tj = (β−1 + β0 + β1)y′′(xj) + Z
(0)
j h ,

where |Z(0)
j | ≤ (|β−1| + |β1|)M3;

(ii) if β−1 + β0 + β1 = 1 and β−1 �= β1, then

Tj = (β1 − β−1)hy′′′(xj) + Z
(1)
j h2 ,

where |Z(1)
j | ≤ [ 1

2 (|β−1| + |β1|) + 1
12 ]M4;

(iii) if β−1 + β0 + β1 = 1, β1 = β−1 and β1 �= 1
12 , then

Tj = (β1 − 1
12 )h2yiv(xj) + Z

(2)
j h3 ,

where |Z(2)
j | ≤ [ 1

12 |β1| + 1
360 ]M6;

(iv) if β−1 = β1 = 1
12 and β0 = 5

6 , then

Tj = 1
240h

4yvi(xj) + Z
(4)
j h6 ,

where |Z(4)
j | ≤ 1

60480M8.

13.4 The approximation of Exercise 3 is used, with the values β1 =
β−1 = 1/12, β0 = 5/6. Use Taylor’s Theorem with integral re-
mainder (Appendix, Theorem A.5) to show that the truncation
error of this approximation may be written

Tj =
∫ h

−h
G(s)yvi(xj + s) ds ,

where

G(s) = (h − s)5/5! − 1
12h

2(h − s)3/3! , 0 ≤ s ≤ h ,

with a similar expression for −h ≤ s ≤ 0. Show that G(s) ≤
0 for all s ∈ [−h, h], and hence use the Integral Mean Value
Theorem to show that the truncation error can be expressed as

Tj =
h6

240
yvi(ξ)

for some value of ξ in (xj − h, xj + h).
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13.5 Suppose that the solution of (13.1), (13.2) has a continuous sixth
derivative on [a, b], and that Yj is the solution of the approxi-
mation used in Exercise 4. Show that

|y(xj) − Yj | ≤ 1
2880h

4(b − a)2M6 , j = 0, . . . , n ,

provided that

h2r(xj) ≤ 12 , j = 1, . . . , n − 1 .

13.6 Complete the proof of Theorem 13.7.
13.7 Show that the solution of the boundary value problem

−y′′ + a2y = 0 , y(−1) = 1 , y(1) = 1 ,

is

y(x) =
cosh ax

cosh a
.

Use the identity

cosh(x + h) + cosh(x − h) = 2 coshx coshh

to verify that the solution of the difference approximation (13.5)
to this problem is

Yj =
coshϑxj
coshϑ

,

where

ϑ = (1/h) cosh−1(1 + 1
2a

2h2) .

By expanding in Taylor series, show that

Yj = y(xj) + 1
24h

2a3(cosh ax sinh a − x sinh ax cosh a)/(cosh a)2

+ O(h4) .

Verify that this result is consistent with Theorem 13.4 when h

is small.
13.8 Carry out a similar analysis as in Exercise 7 for the boundary

value problem

−y′′ − a2y = 0 , y(0) = 0 , y(1) = 1 ,

and explain why in this case Theorem 13.4 cannot be used.
What restriction is required on the value of a?
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13.9 The eigenvalue problem

−y′′ = λy , y(0) = y(1) = 0 ,

is approximated by

−Yj+1 − 2Yj + Yj−1

h2
= µYj , 1 ≤ j ≤ n − 1 , Y0 = Yn = 0 .

Show that the differential equation has solution y = sinmπx,
λ = m2π2 for any positive integer m. Show also that the differ-
ence approximation has solution Yj = sinmπxj , j = 0, 1, . . . , n,
and give an expression for the corresponding value of µ. Use
the fact that

1 − cosϑ = 1
2ϑ

2 − 1
24ξϑ

4, |ξ| ≤ 1 ,

to show that |λ−µ| ≤ m4π4h2/12, and compare with the bound
given by (13.23).
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The finite element method

14.1 Introduction: the model problem

In Chapter 13 we explored finite difference methods for the numerical
solution of two-point boundary value problems. The present chapter is
devoted to the foundations of the theory of finite element methods. For
the sake of simplicity the exposition will be, at least initially, confined
to the second-order ordinary differential equation

− d
dx

(
p(x)

du
dx

)
+ r(x)u = f(x) , a < x < b , (14.1)

where p ∈ C1[a, b], r ∈ C[a, b], f ∈ L2(a, b) and p(x) ≥ c0 > 0, r(x) ≥ 0
for all x ∈ [a, b], subject to the boundary conditions

u(a) = A , u(b) = B . (14.2)

Later on in the chapter, in Section 14.5, we shall also consider the ordi-
nary differential equation

− d
dx

(
p(x)

du
dx

)
+ q(x)

du
dx

+ r(x)u = f(x) , a < x < b , (14.3)

subject to the boundary conditions (14.2). Indeed, much of the mat-
erial discussed here can be extended to partial differential equations; for
pointers to the relevant literature we refer to the Notes at the end of the
chapter.

385
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The finite element method was proposed in a paper by Richard Courant
in the early 1940s,1 although the historical roots of the method can be
traced back to earlier work by Galerkin2 in 1915; unfortunately, the rel-
evance of Courant’s article was not recognised at the time and the idea
was forgotten. In the early 1950s the method was rediscovered by en-
gineers, but its systematic mathematical analysis began only a decade
later. Since then, the finite element method has been developed into one
of the most general and powerful techniques for the numerical solution
of differential equations which is widely used in engineering design and
analysis.

Unlike finite difference schemes which seek to approximate the un-
known analytical solution to a differential equation at a finite number
of selected points, the grid points or mesh points in the computational
domain, the finite element method supplies an approximation to the
analytical solution in the form of a piecewise polynomial function, de-
fined over the entire computational domain. For example, in the case of
the boundary value problem (14.1), (14.2), the simplest finite element
method uses a linear spline, defined over the interval [a, b], to approxi-
mate the analytical solution u.

We shall consider two techniques for the construction of finite ele-
ment approximations: theRayleigh–Ritz principle and theGalerkin
principle. In the case of the boundary value problem (14.1), (14.2) the
approximations which stem from these two principles will be seen to co-
incide. We note, however, that since the Rayleigh–Ritz principle relies
on the fact that the boundary value problem under consideration can
be restated as a variational problem involving the minimisation of a cer-
tain quadratic functional over a function space, its use is restricted to
symmetric boundary value problems, such as (14.1), (14.2) where (14.1)
does not contain a first-derivative term; for example, the Rayleigh–Ritz
principle is not applicable to (14.3), (14.2) unless q(x) ≡ 0. The precise
sense in which the word symmetric is to be interpreted here will be clar-
1 R. Courant, Variational methods for the solution of problems in equilibrium and
vibrations, Bull. Amer. Math. Soc. 49, 1–23, 1943; Richard Courant (8 January
1888, Lublinitz, Prussia, Germany (now Lubliniec, Poland) – 27 January 1972,
New Rochelle, New York, USA). For an illuminating account of the lives of Richard
Courant and David Hilbert, see the book of Constance Reid: Hilbert–Courant,
Springer, New York, 1986.

2 Boris Grigorievich Galerkin (4 March 1871, Polotsk, Russia (now in Belarus) – 12
June 1945, Moscow, USSR) studied mathematics and engineering at the St Peters-
burg Technological Institute. During his studies he supported himself by private
tutoring and working as a designer. His ideas on the approximate solution of dif-
ferential equations were published in 1915. From 1940 until his death, Galerkin
was head of the Institute of Mechanics of the Soviet Academy of Sciences.



14.1 Introduction: the model problem 387

ified later in the chapter. On the other hand, as we shall see in Section
14.5, the Galerkin principle is more generally applicable and does not
require symmetry of the boundary value problem.

To make these observations rigorous, we recall from Chapter 11 the
concept of Sobolev space.

Definition 14.1 For a positive integer k, we define the Sobolev space
Hk(a, b) as the set of real-valued functions v defined on [a, b] such that v
and all of its derivatives of order up to and including k−1 are absolutely
continuous on [a, b] and

v(k) =
dkv
dxk

∈ L2(a, b) .

Here L2(a, b) denotes the set of all functions defined on (a, b) such that

‖v‖2 = ‖v‖L2(a,b) =

(∫ b

a

|v(x)|2dx
)1/2

is finite. We equip Hk(a, b) with the Sobolev norm

‖v‖Hk(a,b) =

(
k∑

m=0

‖v(m)‖2
L2(a,b)

)1/2

,

where v(0) = v.

The Sobolev spaces H1(a, b) and H2(a, b) corresponding, respectively,
to k = 1 and k = 2 will be particularly relevant in this chapter. The
next definition introduces variants of the space H1(a, b) required for the
imposition of the boundary conditions (14.2).

Definition 14.2 (i) Given that A and B are real numbers, H1
E(a, b)

will denote the set of all functions v ∈ H1(a, b) such that v(a) = A and
v(b) = B.

(ii) H1
0(a, b) will signify the set of all functions v ∈ H1(a, b) such that

v(a) = 0 and v(b) = 0.

In the next section we shall state, using Sobolev spaces, the Rayleigh–
Ritz and Galerkin principles associated with the boundary value problem
(14.1), (14.2), and explore their relationship.
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14.2 Rayleigh–Ritz and Galerkin principles

The Rayleigh–Ritz principle relies on converting the boundary value
problem (14.1), (14.2) into a variational problem involving the minimi-
sation of a certain quadratic functional over a function space.

Let us define the quadratic functional J : H1
E(a, b) → R by

J (w) = 1
2

∫ b

a

[p(x)(w′)2 + r(x)w2]dx −
∫ b

a

f(x)w(x)dx

where w ∈ H1
E(a, b), and consider the following variational problem:

(RR) find u ∈ H1
E(a, b) such that J (u) = minw∈H1

E(a,b) J (w) ,

which we shall henceforth refer to as the Rayleigh–Ritz principle.
For the sake of notational simplicity we define

A(w, v) =
∫ b

a

[p(x)w′(x)v′(x) + r(x)w(x)v(x)]dx

and recall from Chapter 9 the definition of inner product on L2(a, b):

〈w, v〉 =
∫ b

a

w(x)v(x)dx .

Using these, we can rewrite J (w) as follows:

J (w) = 1
2A(w,w) − 〈f, w〉 , w ∈ H1

E(a, b) . (14.4)

The mapping A: H1(a, b) × H1(a, b) → R is a bilinear functional in
the following sense:

� A(λ1w1 + λ2w2, v) = λ1A(w1, v) + λ2A(w2, v)
for all λ1, λ2 ∈ R and all w1, w2, v ∈ H1(a, b);

� A(w, µ1v1 + µ2v2) = µ1A(w, v1) + µ2A(w, v2)
for all µ1, µ2 ∈ R and all w, v1, v2 ∈ H1(a, b).

We note, in addition, that the bilinear functional A( · , · ) is symmetric,
in that

A(w, v) = A(v, w) ∀w, v ∈ H1(a, b) . (14.5)

Our next result provides an equivalent characterisation of the Rayleigh–
Ritz principle; it relies on the fact that the bilinear functional A( · , · )
is symmetric in the sense of (14.5).
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Theorem 14.1 A function u in H1
E(a, b) minimises J ( · ) over H1

E(a, b)
if, and only if,

(G) A(u, v) = 〈f, v〉 ∀ v ∈ H1
0(a, b). (14.6)

This identity will be referred to as the Galerkin principle.

Proof of theorem Suppose that u ∈ H1
E(a, b) minimises J ( · ) over

H1
E(a, b); that is, J (u) ≤ J (w) for all w ∈ H1

E(a, b). Noting that w =
u + λv belongs to H1

E(a, b) for all λ ∈ R and all v ∈ H1
0(a, b), we deduce

that

J (u) ≤ J (u + λv) = 1
2A(u + λv, u + λv) − 〈f, u + λv〉

= J (u) + λ[A(u, v) − 〈f, v〉] + 1
2λ

2A(v, v) (14.7)

for all v ∈ H1
0(a, b) and all λ ∈ R. Here, in the transition from the first

line to the second we made use of the fact that A(u, v) = A(v, u) for all
v in H1

0(a, b), which follows from (14.5). Now, (14.7) implies that

− 1
2λ

2A(v, v) ≤ λ[A(u, v) − 〈f, v〉]
for all v ∈ H1

0(a, b) and all λ ∈ R. Let us suppose that λ > 0, divide
both sides of the last inequality by λ and pass to the limit λ → 0 to
deduce that

0 ≤ A(u, v) − 〈f, v〉 ∀ v ∈ H1
0(a, b) . (14.8)

On replacing v by −v in (14.8), we have that also

0 ≥ A(u, v) − 〈f, v〉 ∀ v ∈ H1
0(a, b) . (14.9)

We conclude from (14.8) and (14.9) that

A(u, v) = 〈f, v〉 ∀ v ∈ H1
0(a, b) , (14.10)

as required.
Conversely, if u ∈ H1

E(a, b) is such that A(u, v) = 〈f, v〉 for all v in
H1

0(a, b), then

J (u + λv) = J (u) + λ [A(u, v) − 〈f, v〉] + 1
2λ

2A(v, v) ≥ J (u)

for all v ∈ H1
0(a, b) and all λ ∈ R; therefore, u minimises J ( · ) over

H1
E(a, b).

Thus we have shown that, as long as A( · , · ) is a symmetric bilinear
functional, u ∈ H1

E(a, b) satisfies the Rayleigh–Ritz principle if, and only
if, it satisfies the Galerkin principle.1 Our next task is to explain the
1 In the language of the calculus of variations, (G) is the Euler–Lagrange equation
for the minimisation problem (RR).
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relationship between (RR) and (G) on the one-hand and (14.1), (14.2) on
the other. Since in the case of a symmetric bilinear functional A( · , · )
the principles (RR) and (G) are equivalent, it is sufficient to clarify the
connection between (G), for example, and the boundary value problem
(14.1), (14.2).

We begin with the following definition.

Definition 14.3 If a function u ∈ H1
E(a, b) satisfies the Galerkin prin-

ciple (14.6), it is called a weak solution to the boundary value problem
(14.1), (14.2), and the Galerkin principle is referred to as the weak
formulation of the boundary value problem (14.1), (14.2).

Let us justify this terminology. Suppose that u ∈ H2(a, b) ∩ H1
E(a, b)

is a solution to the boundary value problem (14.1), (14.2). Then,

− d
dx

(
p(x)

du
dx

)
+ r(x)u = f(x) , (14.11)

for almost every x ∈ (a, b) (see the discussion prior to Example 11.1 for
a definition of almost every). Multiplying this equality by an arbitrary
function v ∈ H1

0(a, b), and integrating over (a, b), we conclude that

−
∫ b

a

d
dx

(
p(x)

du
dx

)
v dx +

∫ b

a

r(x)uv dx =
∫ b

a

f(x)v(x) dx .

On integration by parts in the first term on the left-hand side,

−
∫ b

a

d
dx

(
p(x)

du
dx

)
v dx =

[
p(x)

du
dx

v

]b
x=a

+
∫ b

a

p(x)
du
dx

dv
dx

dx .

Since, by hypothesis, v(a) = 0 and v(b) = 0, it follows that∫ b

a

p(x)
du
dx

dv
dx

dx +
∫ b

a

r(x)uv dx =
∫ b

a

f(x)v(x) dx

for all v ∈ H1
0(a, b). Thus, we have shown the following result.

Theorem 14.2 If u ∈ H2(a, b) ∩ H1
E(a, b) is a solution to the boundary

value problem (14.1), (14.2), then u is a weak solution to this problem;
that is,

A(u, v) = 〈f, v〉 ∀ v ∈ H1
0(a, b) . (14.12)

The converse implication, namely that any weak solution u ∈ H1
E(a, b)

of (14.1), (14.2) belongs to H2(a, b) ∩ H1
E(a, b) and solves (14.1), (14.2)

in the usual (pointwise) sense, is not true in general, unless the weak



14.3 Formulation of the finite element method 391

solution can be shown to be sufficiently smooth to belong to H2(a, b).
It is for this reason that any function u ∈ H1

E(a, b) satisfying (14.12) is
called a weak solution of the original boundary value problem.

Thus, Theorem 14.1 shows that u ∈ H1
E(a, b) is a weak solution to

(14.1), (14.2) if, and only if, it minimises J ( · ) over H1
E(a, b). Next, we

show that if a weak solution exists then it must be unique.

Theorem 14.3 The boundary value problem (14.1), (14.2) possesses at
most one weak solution in H1

E(a, b).

Proof The proof is by contradiction. Suppose that u ∈ H1
E(a, b) and

ũ ∈ H1
E(a, b) are two weak solutions to (14.1), (14.2). Then, u − ũ

belongs to H1
0(a, b), and

A(u − ũ, v) = A(u, v) − A(ũ, v) = 〈f, v〉 − 〈f, v〉 = 0

for all v ∈ H1
0(a, b). In particular,

A(u − ũ, u − ũ) = 0 .

However, since p(x) ≥ c0 > 0 and r(x) ≥ 0 for all x in [a, b],

A(v, v) =
∫ b

a

[p(x)(v′)2 + r(x)v2]dx ≥ c0

∫ b

a

|v′|2dx .

On choosing v = u − ũ, this implies that

0 = A(u − ũ, u − ũ) ≥ c0

∫ b

a

|(u − ũ)′|2dx .

Since the right-hand side in the last inequality is nonnegative, it follows
that (u − ũ)′(x) = 0 for almost every x in (a, b); as u − ũ is absolutely
continuous on [a, b] and (u − ũ)(a) = (u − ũ)(b) = 0, we conclude that
u = ũ, and hence we get the desired uniqueness of a weak solution.

It turns out that under the present hypotheses on p, q and f the
existence of a weak solution u ∈ H1

E(a, b) is also ensured, although the
proof of this is less simple and is omitted here; the interested reader is
referred to the literature listed in the Notes at the end of the chapter.

14.3 Formulation of the finite element method

In the previous section we showed that the weak solution to the boundary
value problem (14.1), (14.2) minimises J ( · ) over H1

E(a, b). The finite
element method is based on constructing an approximate solution uh to
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the problem by minimising J ( · ) over a finite-dimensional subset ShE of
H1

E(a, b), instead.
A simple way of constructing ShE is to choose any function ψ ∈ H1

E(a, b),
for example,

ψ(x) =
B − A

b − a
(x − a) + A (14.13)

and a finite set of linearly independent functions ϕj , j = 1, . . . , n− 1, in
H1

0(a, b) for n ≥ 2, and then define

ShE = {vh ∈ H1
E(a, b): vh(x) = ψ(x) +

n−1∑
i=1

viϕi(x) ,

where (v1, . . . , vn−1)T ∈ R
n−1} .

We consider the following approximation of problem (RR):

(RR)h find uh ∈ ShE such that J (uh) = minwh∈Sh
E
J (wh) .

Our next result is a finite-dimensional analogue of Theorem 14.1.

Theorem 14.4 A function uh ∈ ShE minimises J ( · ) over ShE if, and
only if,

(G)h A(uh, vh) = 〈f, vh〉 ∀ vh ∈ Sh0 . (14.14)

Here,

Sh0 = {vh ∈ H1
0(a, b): v

h(x) =
n−1∑
i=1

viϕi(x) ,

where (v1, . . . , vn−1)T ∈ R
n−1} .

The problem (G)h can be thought of as an approximation to the
Galerkin principle (G), and is therefore referred to as the Galerkin
method. For a similar reason, (RR)h is called the Rayleigh–Ritz method,
or just Ritz method. Thus, in complete analogy with the equivalence
of (RR) and (G) formulated in Theorem 14.1, Theorem 14.4 now ex-
presses the equivalence of (RR)h and (G)h, the approximations to (RR)
and (G), respectively. Of course, as in the case of (RR) and (G), the
equivalence of (RR)h and (G)h relies on the assumption that the bilin-
ear functional A( · , · ) is symmetric. The proof is identical to that of
Theorem 14.1, and is left as an exercise.

Theorem 14.4 provides no information about the existence and unique-
ness of uh that minimises J ( · ) over ShE (or, equivalently, of the existence
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and uniqueness of uh that satisfies (14.14)). This question is settled by
our next result.

Theorem 14.5 There exists a unique function uh ∈ ShE that minimises
J ( · ) over ShE; this u

h is called the Ritz approximation to u. Equiva-
lently, there exists a unique function uh ∈ ShE that satisfies (14.14); this
uh is called the Galerkin approximation to u. The Ritz and Galerkin
approximations to u coincide.

Proof We shall prove the second of these two equivalent statements:
we shall show that there exists a unique uh ∈ ShE that satisfies (14.14).
The proof of uniqueness of uh ∈ ShE is analogous to the proof of Theo-
rem 14.3, with u, ũ, H1

E(a, b) and H1
0(a, b), replaced by uh, ũh, ShE and

Sh0 , respectively. Since ShE is finite-dimensional, the uniqueness of uh

satisfying (14.14) implies its existence.

Having shown the existence and uniqueness of uh minimising J ( · )
over ShE (or, equivalently, satisfying (14.14)), we adopt the following
definition.

Definition 14.4 The functions ϕi, i = 1, 2, . . . , n − 1, appearing in the
definitions of ShE and Sh0 are called the Galerkin basis functions.

Since any function vh ∈ Sh0 can be represented as a linear combination
of the Galerkin basis functions ϕi, 1 ≤ i ≤ n− 1, it is clear that (14.14)
is equivalent to

A(uh, ϕi) = 〈f, ϕi〉 , 1 ≤ i ≤ n − 1 . (14.15)

As uh belongs to ShE, it can be expressed in terms of ψ and the Galerkin
basis functions as

uh(x) = ψ(x) +
n−1∑
j=1

ujϕj(x) ,

where uj ∈ R, j = 1, . . . , n − 1, are to be determined. On substituting
this expansion of uh into (14.15), we arrive at the following system of
simultaneous linear equations:

n−1∑
j=1

Mijuj = bi , 1 ≤ i ≤ n − 1 , (14.16)
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where

Mij = A(ϕj , ϕi) , bi = 〈f, ϕi〉 − A(ψ,ϕi) . (14.17)

The coefficients uj , 1 ≤ j ≤ n − 1, in the representation of the approxi-
mate solution are thus obtained by solving the system of linear equations
(14.16). The matrix M is, clearly, symmetric (since the bilinear form
A( · , · ) is symmetric by hypothesis) and positive definite, because

vTMv = A(v, v) > 0 ,

where v = (v1, v2, . . . , vn−1)T ∈ R
n−1 is any nonzero vector and v =

v1ϕ1 + · · · + vn−1ϕn−1 ∈ Sh0 .
The Ritz and Galerkin methods can be used to compute an approx-

imation uh to u as a linear combination of any finite set of linearly in-
dependent functions ϕi, 1 ≤ i ≤ n − 1, in H1

0(a, b). We obtain the Ritz
finite element method and the Galerkin finite element method,
respectively, when we select the approximating subspaces ShE and Sh0 in
the Ritz or the Galerkin method to be spaces of spline functions (see
Chapter 11). Here we only consider the simplest case of linear splines,
and choose the basis functions ϕi, 1 ≤ i ≤ n− 1, to be the hat functions
(11.4). We begin by fixing a set of points xk, k = 0, 1, . . . , n, n ≥ 2, in
the interval [a, b] such that

a = x0 < x1 < · · · < xn = b . (14.18)

The intervals [xi−1, xi], 1 ≤ i ≤ n, are referred to as elements; hence
the name finite element method. In the theory of the finite element
methods (14.18) is called a subdivision of the computational domain
[a, b], and the points xk are called mesh points. The function ϕi is the
piecewise linear function which takes the value 0 at all the mesh points
except xi, where it takes the value 1. Thus,

ϕi(x) =




(x − xi−1)/hi if xi−1 ≤ x ≤ xi ,

(xi+1 − x)/hi+1 if xi ≤ x ≤ xi+1 ,

0 otherwise ,
(14.19)

where hi = xi − xi−1. The functions ϕi, 1 ≤ i ≤ n − 1, are called the
(piecewise linear) finite element basis functions and the associated
Galerkin approximation uh is referred to as the (piecewise linear) finite
element approximation of u. The closure of the interval (xi−1, xi+1)
over which ϕi is nonzero is called the support of the function ϕi. The
piecewise linear finite element basis function ϕi, 1 ≤ i ≤ n − 1, with
support [xi−1, xi+1], is depicted in Figure 14.1.
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xi xi+1

ϕi

1

xi–1

Fig. 14.1. A piecewise linear finite element basis function, ϕi, 1 ≤ i ≤ n− 1.

For the finite element method the important property of the basis
functions ϕi, 1 ≤ i ≤ n − 1, is that they have local support, being
nonzero only in one pair of adjacent intervals, (xi−1, xi] and [xi, xi+1).
This means that, in the matrix M ,

Mij = 0 if |i − j| > 1 .

The matrix M is, therefore, symmetric, positive definite and tridiago-
nal, and the associated system of linear equations can be solved very
efficiently by the methods of Section 3.3, the most efficient algorithm
being LU decomposition, without any use of symmetry. The fact that
M is positive definite means that no interchanges are necessary.

The function ψ in (14.13), which is included in the definition of ShE to
ensure that uh satisfies the boundary conditions at x = a and x = b, is
then given by

ψ(x) = Aϕ0(x) + Bϕn(x) ,

which is also piecewise linear; clearly, ψ(a) = A and ψ(b) = B. Here, ϕ0

and ϕn are defined by setting, respectively, i = 0 and i = n in (14.19)
and restricting the resulting functions to the interval [a, b] = [x0, xn].
In (14.17) we see that the term A(ψ,ϕi) is nonzero only for i = 1 and
i = n − 1.

Before attempting to solve the system of linear equations we must, of
course, first compute the elements of the matrix M , and the quantities
on the right-hand side, bi, i = 1, . . . , n− 1; see (14.16) and (14.17). The
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matrix elements are obtained from

Mij = A(ϕj , ϕi) =
∫ b

a

p(x)ϕ′
j(x)ϕ′

i(x)dx +
∫ b

a

r(x)ϕj(x)ϕi(x)dx ,

with 1 ≤ i, j ≤ n − 1. We have written this as the sum of two terms,
as the matrix M is often written in this way as the sum of two matrices
which, for historical reasons, are often known as the stiffness matrix
and the mass matrix, respectively. The terms Mij are very simple; in
fact in the first integral the derivatives ϕ′

j and ϕ′
i are piecewise constant

functions over [a, b].
It may be possible to compute these integrals analytically, but more

generally some form of numerical quadrature will be necessary. It is
then easy to show that if we use certain types of quadrature formulae
we shall be led to the same system of equations as in the finite difference
method of Section 13.5. Consider the particularly simple case where the
mesh points are equally spaced, so that xj = a + jh, j = 0, 1, . . . , n,
h = (b − a)/n. If we then approximate the integrals involved in the
stiffness matrix by the midpoint rule (see Chapter 10), we obtain∫ xi

xi−1

p(x)ϕ′
i−1(x)ϕ′

i(x)dx = −(1/h2)
∫ xi

xi−1

p(x)dx

≈ −pi−1/2/h ,

where pi−1/2 = p(xi−h/2), and similarly for the other integrals involved.
For the integrals in the mass matrix we use the trapezium rule, and then∫ xi

xi−1

r(x)ϕi−1(x)ϕi(x)dx ≈ 0 ,

since ϕi is zero at xi−1 and ϕi−1 is zero at xi. In the same way∫ xi

xi−1

r(x)[ϕi(x)]2dx ≈ 1
2hri ,

where ri = r(xi), since ϕi is zero at one end of the interval and unity at
the other. The other part of the integral is, similarly,∫ xi+1

xi

r(x)[ϕi(x)]2dx ≈ 1
2hri . (14.20)

Assuming that f ∈ C[a, b], approximating the integral on the right-hand
side by the trapezium rule in the same way, and putting all the parts
together, equation (14.14) now takes the approximate form

−
pi−1/2

h
ui−1 +

pi−1/2 + pi+1/2

h
ui −

pi+1/2

h
ui+1 + hriui = hfi ,
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for i = 1, 2, . . . , n − 1, with the notational convention that u0 = A and
un = B, and fi = f(xi); clearly, this is the same as the finite difference
equation (13.19). Of course, had we used a different set of basis func-
tions ϕi, 1 ≤ i ≤ n−1, or different numerical quadrature rules, the finite
element and finite difference methods would have no longer been identi-
cal. Indeed, this example is just an illustration of the relation between
the two methods; we should normally expect to compute the entries of
the matrix M by using some more accurate quadrature method, such as
a two-point Gauss formula.

In the next two sections we shall assess the accuracy of the finite
element method. Our goal is to quantify the amount of reduction in the
error u − uh as the mesh spacing h is reduced.

14.4 Error analysis of the finite element method

We begin with a fundamental result that underlies the error analysis of
finite element methods.

Theorem 14.6 (Céa’s Lemma) Suppose that u is the function that
minimises J (u) over H1

E(a, b) (or, equivalently, that u satisfies (14.6)),
and that uh is its Galerkin approximation obtained by minimising J ( · )
over ShE (or, equivalently, that uh satisfies (14.14)). Then,

A(u − uh, vh) = 0 ∀ vh ∈ Sh0 , (14.21)

and

A(u − uh, u − uh) = min
vh∈Sh

E

A(u − vh, u − vh) . (14.22)

The identity (14.21) is referred to as Galerkin orthogonality. The
terminology stems from the fact that, since the bilinear functional A( · , · )
is symmetric and A(v, v) > 0 for all v ∈ H1

0(a, b) \ {0}, A( · , · ) is an
inner product in the linear space H1

0(a, b). Therefore, by virtue of Def-
inition 9.2, (14.21) means that u − uh is orthogonal to Sh0 in H1

0(a, b).
A geometrical illustration of Galerkin orthogonality is given in Figure
14.2. Given that ψ is a fixed element of H1

E(a, b), the mapping

Rh: u − ψ ∈ H1
0(a, b) �→ uh − ψ ∈ Sh0

which assigns a uh ∈ ShE to u ∈ H1
E(a, b) (where u and uh are as in

Theorem 14.6) is called the Ritz projector.
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u – ψ

uh – ψ
0

Sh
0

u – uh = (u – ψ) – (uh – ψ)

H1
0(a,b)

Fig. 14.2. Illustration of the Galerkin orthogonality property of the finite ele-
ment method. A((u−ψ)− (uh −ψ), vh) = A(u−uh, vh) = 0 for all vh in Sh

0 .
Here, ψ(x) = Aϕ0(x) + Bϕn(x), so that u − ψ ∈ H1

0(a, b) and uh − ψ ∈ Sh
0 .

The 0 in the figure denotes the zero element of the linear space Sh
0 (and, si-

multaneously, that of H1
0(a, b)), namely the function that is identically zero on

the interval (a, b).

Proof of theorem By the definition of the Galerkin method (G)h,

A(uh, vh) = 〈f, vh〉 ∀ vh ∈ Sh0 .

On the other hand, we deduce from (G) that

A(u, vh) = 〈f, vh〉 ∀ vh ∈ Sh0 ,

since vh ∈ Sh0 ⊂ H1
0(a, b). The Galerkin orthogonality property (14.21)

follows by subtraction.
Now suppose that vh is any function in ShE; then,

A(u − vh, u − vh) = A(u − uh + uh − vh, u − uh + uh − vh)

= A(u − uh, u − uh) + A(uh − vh, uh − vh)

+ 2A(u − uh, uh − vh)

= A(u − uh, u − uh) + A(uh − vh, uh − vh) ,

by Galerkin orthogonality, given that uh − vh ∈ Sh0 . In the transition
from the first line to the second, we made use of the fact that the bi-
linear functional A is symmetric. As the term A(uh − vh, uh − vh) is
nonnegative, we deduce that

A(u − uh, u − uh) ≤ A(u − vh, u − vh) ∀ vh ∈ Sh0 ,

with equality when vh = uh; hence (14.22).
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Motivated by the minimisation property (14.22), we define the energy
norm ‖ · ‖A on H1

0(a, b) via

‖v‖A = [A(v, v)]1/2 . (14.23)

Under our hypotheses on p and q, it is easy to see that ‖ · ‖A satisfies
all axioms of norm (see Chapter 2). The result we have just proved
shows that uh is the best approximation from ShE to the true solution u ∈
H1

E(a, b) of our problem, when we measure the error of the approximation
in the energy norm:

‖u − uh‖A = min
vh∈Sh

E

‖u − vh‖A . (14.24)

A particularly relevant question is how the error u − uh depends on
the spacing h of the subdivision of the computational domain [a, b]. We
can obtain a bound on the error u − uh, measured in the energy norm,
by choosing a particular function vh ∈ ShE in (14.24) whose closeness to
u is easy to assess. For this purpose, we introduce the finite element
interpolant Ihu ∈ ShE of u ∈ H1

E(a, b) by

Ihu(x) = ψ(x) +
n−1∑
i=1

u(xi)ϕi(x) , x ∈ [a, b] .

Clearly,

Ihu(xj) = u(xj) , j = 0, 1, . . . , n ,

which justifies our use of the word interpolant.
We then deduce from (14.24) that

‖u − uh‖A ≤ ‖u − Ihu‖A ; (14.25)

hence, in order to quantify ‖u−uh‖A, we only need to estimate the size
of ‖u − Ihu‖A. This leads us to the next theorem.

Theorem 14.7 Suppose that u ∈ H2(a, b) ∩ H1
E(a, b) and let Ihu be the

finite element interpolant of u from ShE defined above; then, the following
error bounds hold:

‖u − Ihu‖L2(xi−1,xi) ≤
(
hi
π

)2

‖u′′‖L2(xi−1,xi) ,

‖u′ − (Ihu)′‖L2(xi−1,xi) ≤ hi
π

‖u′′‖L2(xi−1,xi) ,

for i = 1, 2, . . . , n, where hi = xi − xi−1.
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Proof Consider an element [xi−1, xi], 1 ≤ i ≤ n, and define ζ(x) =
u(x) − Ihu(x) for x ∈ [xi−1, xi]. Then, ζ ∈ H2(xi−1, xi) and ζ(xi−1) =
ζ(xi) = 0. Therefore ζ can be expanded into a convergent Fourier sine-
series,

ζ(x) =
∞∑
k=1

ak sin
kπ(x − xi−1)

hi
, x ∈ [xi−1, xi] .

Here, convergence is to be understood in the norm ‖·‖L2(xi−1,xi). Hence,∫ xi

xi−1

[ζ(x)]2dx =
∫ xi

xi−1

ζ(x)ζ(x)dx

=
∞∑

k,�=1

aka�

∫ xi

xi−1

sin
kπ(x − xi−1)

hi
sin

$π(x − xi−1)
hi

dx

= hi

∞∑
k,�=1

aka�

∫ 1

0

sin kπt sin $πtdt

=
hi
2

∞∑
k,�=1

aka� δk�

=
hi
2

∞∑
k=1

|ak|2 ,

where δk� is the Kronecker delta. Differentiating the Fourier sine series
of ζ twice, we find that the Fourier coefficients of ζ ′ are (kπ/hi)ak,
while those of ζ ′′ are −(kπ/hi)2ak. Thus, proceeding in the same way
as above, ∫ xi

xi−1

[ζ ′(x)]2dx =
hi
2

∞∑
k=1

(
kπ

hi

)2

|ak|2,

∫ xi

xi−1

[ζ ′′(x)]2dx =
hi
2

∞∑
k=1

(
kπ

hi

)4

|ak|2 .

Because k4 ≥ k2 ≥ 1, it follows that∫ xi

xi−1

[ζ(x)]2dx ≤
(
hi
π

)4 ∫ xi

xi−1

[ζ ′′(x)]2dx ,

∫ xi

xi−1

[ζ ′(x)]2dx ≤
(
hi
π

)2 ∫ xi

xi−1

[ζ ′′(x)]2dx .

However, ζ ′′(x) = u′′(x) − (Ihu)′′(x) = u′′(x) for x ∈ (xi−1, xi), and
hence the desired bounds on the interpolation error.
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Now, substituting the bounds from Theorem 14.7 into the definition
of the norm ‖u − Ihu‖A, we arrive at the following estimate of the
interpolation error in the energy norm.

Corollary 14.1 Suppose that u ∈ H2(a, b) ∩ H1
E(a, b). Then,

‖u − Ihu‖2
A ≤

n∑
i=1

{(
hi
π

)2

Pi +
(
hi
π

)4

Ri

}
‖u′′‖2

L2(xi−1,xi)
,

where Pi = maxx∈[xi−1,xi] p(x) and Ri = maxx∈[xi−1,xi] r(x).

Proof Let us observe that

‖v‖2
A = A(v, v)

=
∫ b

a

[
p(x)|v′(x)|2 + r(x)|v(x)|2

]
dx

=
n∑
i=1

∫ xi

xi−1

[
p(x)|v′(x)|2 + r(x)|v(x)|2

]
dx

≤
n∑
i=1

{
Pi‖v′‖2

L2(xi−1,xi)
+ Ri‖v‖2

L2(xi−1,xi)

}
.

On letting v = u−Ihu and applying the preceding theorem on the right-
hand side of the last inequality, with v′ and v replaced by u′ − (Ihu)′

and u − Ihu, respectively, the result follows.

Inserting this estimate into (14.25) leads to the desired bound on the
error between the analytical solution u and its finite element approxi-
mation uh in the energy norm.

Corollary 14.2 Suppose that u ∈ H2(a, b) ∩ H1
E(a, b). Then,

‖u − uh‖2
A ≤

n∑
i=1

{(
hi
π

)2

Pi +
(
hi
π

)4

Ri

}
‖u′′‖2

L2(xi−1,xi)
,

where Pi = maxx∈[xi−1,xi] p(x) and Ri = maxx∈[xi−1,xi] r(x). Further,

‖u − uh‖A ≤ h

π

{
P +

(
h

π

)2

R

}1/2

‖u′′‖L2(a,b) , (14.26)

where P =maxx∈[a,b] p(x), R=maxx∈[a,b] r(x), and h=max1≤i≤n hi.
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Fig. 14.3. Graph of the finite element approximation uh to the analytical
solution u of the boundary value problem (14.27) on a uniform subdivision
of [0, 1] of spacing h = 1/n, with n = 2 (top left), n = 4 (top right), n = 6
(bottom left), and n = 100 (bottom right). In each of the four subfigures, the
dashed curve is the graph of the analytical solution u(x) = sin(πx). In the last
figure the approximation error is so small that u and uh are indistinguishable.

In order to illustrate the performance of the finite element method,
we consider the following example:

−u′′+r(x)u = f(x) , x ∈ (0, 1) , u(0) = 0 , u(1) = 0 . (14.27)

If r(x) ≡ 1 and f(x) = (1 + π2) sin(πx), the unique solution to this
problem is u(x) = sin(πx). Let us pretend that we do not know the
analytical solution u, and solve the boundary value problem numerically,
using the finite element method on a subdivision of [0, 1] of uniform
spacing h = 1/n, for various values of n. The integrals 〈f, ϕi〉 involved
in the definition of bi in (14.17) have been approximated, on each of the
elements [xi−1, xi], 1 ≤ i ≤ n, by means of the trapezium rule. The
resulting approximations uh, for n = 2, 4, 6, 100, are shown in Figure
14.3.



14.5 A posteriori error analysis by duality 403

We see from Figure 14.3 that, as the spacing h of the subdivision
is reduced, the finite element solution uh approximates the analytical
solution u(x) = sin(πx) with increasing accuracy. Indeed, the results
corresponding to n = 2 and n = 4 in Figure 14.3 indicate that as the
number of intervals in the subdivision is doubled (i.e., h is halved), the
maximum error between u(x) and uh(x) is reduced by a factor of about 4.
This reduction in the error cannot be explained by Corollary 14.2 which
merely implies that halving h should lead to a reduction in ‖u − uh‖A
by a factor no less than 2. If you would like to learn more about the
source of the observed enhancement of accuracy, consult Exercise 5 at
the end of the chapter.

14.5 A posteriori error analysis by duality

The bound on the error between the analytical solution u and its finite
element approximation uh formulated in Corollary 14.2 shows that, in
the limit of h → 0, the error ‖u − uh‖A will tend to zero as O(h).
This is a useful result from the theoretical point of view: it reassures us
that the unknown analytical solution may be approximated arbitrarily
well by making h sufficiently small. On the other hand, asymptotic
error bounds of this kind are not particularly helpful for the purpose of
precisely quantifying the size of the error between u and uh for a given,
fixed, mesh size h > 0: as u is unknown, it is difficult to tell just how
large the right-hand side of (14.26) really is.

The aim of the present section is, therefore, to derive a computable
bound on the error, and to demonstrate how such a bound may be
implemented into an adaptive mesh-refinement algorithm, capable of
reducing the error u − uh below a certain prescribed tolerance in an
automated manner, without human intervention. The approach is based
on seeking a bound on u − uh in terms of the computed solution uh

rather than in terms of norms of the unknown analytical solution u. A
bound on the error in terms of uh is referred to as an a posteriori

error bound, due to the fact that it becomes computable only after the
numerical solution uh has been obtained.

In order to illuminate the key ideas while avoiding technical difficul-
ties, we shall consider the two-point boundary value problem

−(p(x)u′)′ + q(x)u′ + r(x)u = f(x) , a < x < b , (14.28)

u(a) = A , u(b) = B , (14.29)

where p, q ∈ C1[a, b], r ∈ C[a, b] and f ∈ L2(a, b). We shall assume, as
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at the beginning of the chapter, that p(x) ≥ c0 > 0, x ∈ [a, b]; however,
instead of supposing that r(x) ≥ 0, we shall now demand that

r(x) − 1
2
q′(x) ≥ c1 , x ∈ [a, b] , (14.30)

where c1 is assumed to be a positive constant.1

Letting

A(w, v) =
∫ b

a

[p(x)w′(x)v′(x) + q(x)w′(x)v(x) + r(x)w(x)v(x)]dx ,

the weak formulation of (14.28), (14.29) is as follows:

find u ∈ H1
E(a, b) such that A(u, v) = 〈f, v〉 ∀ v ∈ H1

0(a, b) . (14.31)

Here, the bilinear functional A( · , · ) is not symmetric, unless q(x) ≡ 0:
indeed, A(w, v) = A(v, w) for all v, w ∈ H1(a, b) if, and only if, q ≡ 0.
Hence, in general, the boundary value problem (14.28), (14.29) cannot
be assigned a Ritz principle. On the other hand, the Galerkin principle
(weak formulation) (14.31) is perfectly meaningful for any choice of q.

The Galerkin finite element approximation of (14.31) is constructed
by introducing a (possibly nonuniform) subdivision of the interval [a, b]
defined by the points

a = x0 < x1 < · · · < xn−1 < xn = b

and considering the finite element space ShE ⊂ H1
E(a, b) consisting of all

continuous piecewise linear functions vh on this subdivision that satisfy
the boundary conditions vh(a) = A and vh(b) = B. The Galerkin finite
element approximation of the boundary value problem is

find uh ∈ ShE such that A(uh, vh) = 〈f, vh〉 ∀ vh ∈ Sh0 . (14.32)

We let hi = xi − xi−1, i = 1, . . . , n, and put h = maxi hi.
We wish to derive an a posteriori bound on the error in the ‖ · ‖L2(a,b)

norm; that is, our aim is to quantify the size of ‖u− uh‖L2(a,b) in terms
of the mesh parameter h and the computed solution uh (rather than
in terms of the analytical solution u as was the case in the a priori
error analysis developed in the previous section). For this purpose, we

1 At the expense of slight technical complications in the subsequent discussion, the
requirement that c1 > 0 can be relaxed to c1 > −λ1, where λ1 is the smallest
(positive) eigenvalue for the Sturm–Liouville eigenvalue problem −(p(x)w′)′ = λw
for x ∈ (a, b), w(a) = 0, w(b) = 0.
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consider the auxiliary boundary value problem

−(p(x)z′)′ − (q(x)z)′ + r(x)z = (u − uh)(x) , a < x < b , (14.33)

z(a) = 0 , z(b) = 0 , (14.34)

called the dual problem (or adjoint problem).
We begin our error analysis by noting that the definition of the dual

problem and straightforward integration by parts yield (recalling that
(u − uh)(a) = 0, (u − uh)(b) = 0)

‖u − uh‖2
L2(a,b) = 〈u − uh, u − uh〉

= 〈u − uh,−(pz′)′ − (qz)′ + rz〉
= A(u − uh, z) .

On the other hand, (14.31) and (14.32) imply the Galerkin orthogonality
property

A(u − uh, zh) = 0 ∀ zh ∈ Sh0 .

In particular, by choosing

zh = Ihz ∈ Sh0 ,

the continuous piecewise linear interpolant of the function z ∈ H1
0(a, b),

associated with the subdivision a = x0 < x1 < · · · < xn−1 < xn = b, we
have that

A(u − uh, Ihz) = 0 .

Thus,

‖u − uh‖2
L2(a,b) = A(u − uh, z − Ihz)

= A(u, z − Ihz) − A(uh, z − Ihz)
= 〈f, z − Ihz〉 − A(uh, z − Ihz) , (14.35)

where the last transition follows from (14.31) with v = z − Ihz.
We observe that the right-hand side no longer involves the unknown

analytical solution u. Furthermore,

A(uh, z − Ihz) =
n∑
i=1

∫ xi

xi−1

p(x)(uh)′(x) (z − Ihz)′(x) dx

+
n∑
i=1

∫ xi

xi−1

q(x) (uh)′(x) (z − Ihz)(x) dx

+
n∑
i=1

∫ xi

xi−1

r(x)uh(x) (z − Ihz)(x) dx .
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Integrating by parts in each of the n integrals in the first sum on the
right-hand side, noting that (z − Ihz)(xi) = 0, i = 0, . . . , n, we deduce
that

A(uh, z − Ihz)

=
n∑
i=1

∫ xi

xi−1

[
−(p(x)(uh)′)′ + q(x)(uh)′ + r(x)uh

]
(z − Ihz)(x) dx .

Furthermore,

〈f, z − Ihz〉 =
n∑
i=1

∫ xi

xi−1

f(x) (z − Ihz)(x) dx .

Substituting these two identities into (14.35), we deduce that

‖u − uh‖2
L2(a,b) =

n∑
i=1

∫ xi

xi−1

R(uh)(x) (z − Ihz)(x) dx , (14.36)

where, for 1 ≤ i ≤ n, and x ∈ (xi−1, xi),

R(uh)(x) = f(x) −
[
−(p(x)(uh)′)′ + q(x)(uh)′ + r(x)uh

]
.

The function R(uh) is called the finite element residual; it measures
the extent to which uh fails to satisfy the differential equation

−(p(x)u′)′ + q(x)u′ + r(x)u = f(x)

on the union of the intervals (xi−1, xi), i = 1, . . . , n. Now, applying the
Cauchy–Schwarz inequality on the right-hand side of (14.36) yields

‖u − uh‖2
L2(a,b) ≤

n∑
i=1

‖R(uh)‖L2(xi−1,xi) ‖z − Ihz‖L2(xi−1,xi) .

Recalling from Theorem 14.7 that

‖z − Ihz‖L2(xi−1,xi) ≤
(
hi
π

)2

‖z′′‖L2(xi−1,xi) , i = 1, 2, . . . , n ,

we deduce that

‖u − uh‖2
L2(a,b) ≤ 1

π2

n∑
i=1

h2
i ‖R(uh)‖L2(xi−1,xi) ‖z′′‖L2(xi−1,xi) ,

and consequently, using the Cauchy–Schwarz inequality for finite sums,

n∑
i=1

aibi ≤
(

n∑
i=1

|ai|2
)1/2 ( n∑

i=1

|bi|2
)1/2
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with

ai = h2
i ‖R(uh)‖L2(xi−1,xi) and bi = ‖z′′‖L2(xi−1,xi) ,

we find that

‖u − uh‖2
L2(a,b) ≤ 1

π2

(
n∑
i=1

h4
i ‖R(uh)‖2

L2(xi−1,xi)

)1/2

‖z′′‖L2(0,1).

(14.37)
The rest of the discussion is aimed at eliminating ‖z′′‖L2(a,b) from the
right-hand side of (14.37). The desired a posteriori bound on the error
‖u − uh‖L2(a,b) in terms of R(uh) will then follow.

Lemma 14.1 Suppose that z is the solution of the dual problem (14.33),
(14.34). Then, there exists a positive constant K, dependent only on p,
q and r, such that

‖z′′‖L2(a,b) ≤ K‖u − uh‖L2(a,b) .

Proof As

−pz′′ − p′z′ − qz′ − q′z + rz = u − uh ,

it follows that

pz′′ = uh − u − (p′ + q) z′ + (r − q′) z ,

and therefore, recalling that p(x) ≥ c0 > 0 for x ∈ [a, b],

c0‖z′′‖L2(a,b) ≤ ‖u − uh‖L2(a,b) + ‖p′ + q‖∞ ‖z′‖L2(a,b)

+‖r − q′‖∞ ‖z‖L2(a,b) , (14.38)

where we used the notation ‖w‖∞ = maxx∈[a,b] |w(x)|.
We shall show that both ‖z′‖L2(a,b) and ‖z‖L2(a,b) can be bounded in

terms of ‖u − uh‖L2(a,b) and then, using (14.38), we shall deduce that
the same is true of ‖z′′‖L2(a,b). Let us observe that, by (14.33),

〈−(pz′)′ − (qz)′ + rz, z〉 = 〈u − uh, z〉 . (14.39)

Integrating by parts in the terms involving p and q and noting that
z(0) = 0 and z(1) = 0 yields

〈−(pz′)′ − (qz)′ + rz, z〉 = 〈pz′, z′〉 + 〈qz, z′〉 + 〈rz, z〉

≥ c0‖z′‖2
L2(a,b) +

1
2

∫ b

a

q(x)[z2(x)]′dx +
∫ b

a

r(x)[z(x)]2dx .
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Integrating by parts, again, in the second term on the right gives

〈−(pz′)′ − (qz)′ + rz, z〉 ≥ c0‖z′‖2
L2(a,b) − 1

2

∫ b

a

q′(x)[z2(x)]dx

+
∫ b

a

r(x)[z(x)]2dx .

Hence, from (14.39),

c0‖z′‖2
L2(a,b) +

∫ b

a

(
r(x) − 1

2
q′(x)

)
[z(x)]2dx ≤ 〈u − uh, z〉 ,

and thereby, noting (14.30) and using the Cauchy–Schwarz inequality
on the right-hand side,

min{c0, c1}
(
‖z′‖2

L2(a,b) + ‖z‖2
L2(a,b)

)
≤ 〈u − uh, z〉

≤ ‖u − uh‖L2(a,b) ‖z‖L2(a,b) . (14.40)

Therefore, also

min{c0, c1}‖z‖2
H1(a,b) ≤ ‖u − uh‖L2(a,b) ‖z‖H1(a,b) ,

which means that(
‖z′‖2

L2(a,b) + ‖z‖2
L2(a,b)

)1/2

= ‖z‖H1(a,b)

≤ 1
min{c0, c1}

‖u − uh‖L2(a,b) . (14.41)

Now we substitute (14.41) into (14.38) to deduce that

‖z′′‖L2(a,b) ≤ K‖u − uh‖L2(a,b) , (14.42)

where

K =
1
c0

(
1 +

1
min{c0, c1}

(
‖p′ + q‖2

∞ + ‖r − q′‖2
∞
)1/2

)
.

It is important to observe here that K involves only known quantities:
the coefficients in the differential equation under consideration. There-
fore K can be computed, or at least bounded above, without difficulties.
On inserting (14.42) into (14.37), we arrive at our final result, the com-
putable a posteriori error bound,

‖u − uh‖L2(a,b) ≤ K0

(
n∑
i=1

h4
i ‖R(uh)‖2

L2(xi−1,xi)

)1/2

, (14.43)
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where K0 = K/π2.
Next we shall describe the construction of an adaptive mesh refinement

algorithm based on the a posteriori error bound (14.43).
Suppose that TOL is a prescribed tolerance and that our aim is to

compute a finite element approximation uh to the unknown solution u

so that

‖u − uh‖L2(a,b) ≤ TOL . (14.44)

We shall use the a posteriori error bound (14.43) to achieve this goal
by systematically refining the subdivision, and computing a succession
of numerical solutions uh on this sequence of subdivisions, until the
inequality

K0

(
n∑
i=1

h4
i ‖R(uh)‖2

L2(xi−1,xi)

)1/2

≤ TOL (14.45)

is satisfied. Clearly, if uh satisfies (14.45), then, by virtue of (14.43), it
also satisfies (14.44).

In order for the inequality (14.45) to hold it is sufficient to ensure
that, on each interval [xi−1, xi], i = 1, 2, . . . , n, we have

h4
i ‖R(uh)‖2

L2(xi−1,xi)
≤ 1

n

(
TOL

K0

)2

. (14.46)

Thus, a sufficient condition for (14.44) is that (14.46) holds for all i =
1, 2, . . . , n.

The mesh adaptation algorithm, therefore, proceeds as follows:

Step 1. Choose an initial subdivision

T0: a = x
(0)
0 < x

(0)
1 < · · · < x

(0)
n0−1 < x(0)

n0
= b

of the interval [a, b], with h
(0)
i = x

(0)
i −x

(0)
i−1, for i = 1, 2, . . . , n0;

let h(0) = maxi h
(0)
i , and consider the associated finite ele-

ment space Sh
(0)

E (of dimension n0 − 1);
Step 2. Compute the corresponding solution uh

(0) ∈ Sh
(0)

E ;
Step 3. Given a computed solution uh

(m) ∈ Sh
(m)

E for some m ≥ 0,
defined on a subdivision Tm, STOP if

K0

(
nm∑
i=1

(
h

(m)
i

)4

‖R(uh
(m)

)‖2

L2(x
(m)
i−1,x

(m)
i )

)1/2

≤ TOL ;

(14.47)
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Step 4. If not, then halve those elements [x(m)
i−1, x

(m)
i ] in Tm, with i

in the set {1, 2, . . . , nm}, for which

(
h

(m)
i

)4

‖R(uh
(m)

)‖2
L2(xmi−1,x

m
i ) >

1
nm

(
TOL

K0

)2

, (14.48)

denote by Tm+1 the resulting subdivision of [a, b] with nm+1

elements [x(m+1)
i−1 , x

(m+1)
i ] of respective lengths

h
(m+1)
i = x

(m+1)
i − x

(m+1)
i−1 , i = 1, . . . , nm+1 ,

and consider the associated finite element space Sh
(m+1)

E of
dimension nm+1 − 1;

Step 5. Compute the finite element approximation uh
(m+1) ∈ Sh

(m+1)

E ,
increase m by 1 and return to Step 3.

The inequality (14.47) is called the stopping criterion for the mesh
adaptation algorithm, and (14.48) is referred to as the refinement cri-
terion. According to the a posteriori error bound (14.43), when the
adaptive algorithm terminates, the error ‖u − uh‖L2(a,b) is guaranteed
not to exceed the prescribed tolerance TOL.

We conclude the body of this chapter with a numerical experiment
which illustrates the performance of the adaptive algorithm.

Example 14.1 Let us consider the second-order ordinary differential
equation

−(p(x)u′)′ + q(x)u′ + r(x)u = f(x) , x ∈ (0, 1) , (14.49)

subject to the boundary conditions

u(0) = 0 , u(1) = 0 . (14.50)

Suppose, for example, that

p(x) ≡ 1 , q(x) ≡ 20 , r(x) ≡ 10 and f(x) ≡ 1 .

In this case, the analytical solution, u, can be expressed in closed form:

u(x) = C1 eλ1x + C2 eλ2x +
1
10

,

where λ1 and λ2 are the two roots of the characteristic polynomial of
the differential equation, −λ2 + 20λ + 10 = 0, i.e.,

λ1 = 10 +
√

110 , λ2 = 10 −
√

110 ,
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Fig. 14.4. Analytical solution of the boundary value problem (14.49), (14.50),
with p(x) ≡ 1, q(x) ≡ 20, r(x) ≡ 10 and f(x) ≡ 1.

and C1 and C2 are constants chosen so as to ensure that u(0) = 0 and
u(1) = 0; hence,

C1 =
eλ2 − 1

10 (eλ1 − eλ2)
, C2 =

1 − eλ1

10 (eλ1 − eλ2)
.

The function u is shown in Figure 14.4.
Now, let us imagine for a moment that u is unknown, and let us

compute a numerical approximation uh to u, using the adaptive finite
element algorithm described above, so that ‖u−uh‖L2(0,1) ≤ TOL, where
TOL = 10−4. The computation begins on a coarse subdivision of the in-
terval [0, 1] containing only 10 elements. This is then successively refined
using the refinement criterion (14.48) until the stopping criterion (14.47)
is satisfied; the resulting subdivisions are shown in Figure 14.5. In this
example, the constant K0 appearing in (14.43) and (14.45)–(14.48) is
(1 +

√
500)/π2 (≈ 2.367).

Since we are in the fortunate (but highly idealised) position that, in
addition to the numerical solution uh, the analytical solution u is also
available, we can assess the sharpness of our a posteriori error bound
(14.43) by comparing the error ‖u − uh‖L2(0,1) appearing on the left-
hand side of (14.43) with the computable a posteriori error bound on
the right-hand side of (14.43). Figure 14.6 shows that the a posteriori
bound consistently overestimates the error ‖u−uh‖L2(0,1) by about two
orders of magnitude. By comparing the slopes of the two curves in Figure
14.6, we also see that the error and the a posteriori error bound decay
at approximately the same rate as the number of mesh points increases
in the course of mesh adaptation. �
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Subdivision 1 with 10 elements

Subdivision 2 with 12 elements

Subdivision 3 with 24 elements

Subdivision 4 with 34 elements

Subdivision 5 with 64 elements

Subdivision 6 with 86 elements

Fig. 14.5. Sequence of subdivisions of the interval [0, 1] designed by the adap-
tive algorithm with TOL = 10−4.

14.6 Notes

For further details concerning the mathematical theory and the imple-
mentation of the finite element method we refer to the following books.

➧ D. Braess, Finite Elements, Cambridge University Press, Cambridge,
2001.

➧ S. Brenner and L.R. Scott, The Mathematical Theory of Finite
Element Methods, Second Edition, Springer, New York, 2002.

➧ C. Johnson, Numerical Solution of Partial Differential Equations by
the Finite Element Method, Cambridge University Press, Cambridge,
1996.

For recent results on the theory of a posteriori error estimation for finite
element approximations of differential equations, based on duality argu-
ments, the interested reader may wish to consult the following review
articles.
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Fig. 14.6. Comparison of the true error ‖u− uh‖L2(0,1) (solid curve) with the
a posteriori error bound delivered by the adaptive algorithm (dashed curve)
with TOL = 10−4.

➧ K. Erikson, D. Estep, P. Hansbo, and C. Johnson, Introduction
to adaptive methods for differential equations, in Acta Numerica 4
(A. Iserles, ed.), Cambridge University Press, Cambridge, 105–158,
1995.

➧ R. Becker and R. Rannacher, An optimal control approach to
a-posteriori error estimation in finite element methods, in Acta Nu-
merica 10 (A. Iserles, ed.), Cambridge University Press, Cambridge,
1–102, 2001.

➧ M.B. Giles and E. Süli, Adjoint methods for PDEs: superconver-
gence and adaptivity by duality, in Acta Numerica 11 (A. Iserles, ed.),
Cambridge University Press, Cambridge, 145–236, 2002.

A detailed and general survey of the subject of a posteriori error esti-
mation can be found in

➧ M. Ainsworth and J.T. Oden, A posteriori Error Estimation in
Finite Element Analysis, John Wiley & Sons, New York, 2000.



414 14 The finite element method

In this chapter we were concerned with the a priori error analysis of
the piecewise linear finite element method in the energy norm, and its a
posteriori error analysis in the L2 norm. Using similar techniques, one
can establish an a priori error bound in the L2 norm and an a posteriori
error bound in the energy norm. For extensions of the theory considered
here to higher-order piecewise polynomial finite element approximations
and generalisations to partial differential equations, the reader is referred
to the books listed above.

Exercises

14.1 Given that (a, b) is an open interval of the real line, let

H1
E0

(a, b) = {v ∈ H1(a, b): v(a) = 0} .

(i) By writing

v(x) =
∫ x

a

v′(ξ)dξ ,

for v ∈ H1
E0

(a, b) and x ∈ [a, b], show the following (Poincaré–
Friedrichs) inequality:

‖v‖2
L2(a,b) ≤ 1

2
(b − a)2‖v′‖2

L2(a,b) ∀ v ∈ H1
E0

(a, b) .

(ii) By writing

[v(x)]2 =
∫ x

a

d
dξ

[v(ξ)]2 dξ = 2
∫ x

a

v(ξ)v′(ξ)dξ

for v ∈ H1
E0

(a, b) and x ∈ [a, b], show the following (Agmon’s)
inequality:

max
x∈[a,b]

|v(x)|2 ≤ 2 ‖v‖L2(a,b)‖v′‖L2(a,b) ∀ v ∈ H1
E0

(a, b) .

14.2 Given that f ∈ L2(0, 1), state the weak formulation of each of
the following boundary value problems on the interval (0, 1):

(a) −u′′ + u = f(x), u(0) = 0, u(1) = 0 ;
(b) −u′′ + u = f(x), u(0) = 0, u′(1) = 1 ;
(c) −u′′ + u = f(x), u(0) = 0, u(1) + u′(1) = 2 .

In each case, show that there exists at most one weak solution.
14.3 Give a proof of Theorem 14.4.
14.4 Prove Corollary 14.2.
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14.5 Consider the boundary value problem

−p0u
′′ + r0u = f(x) , u(0) = 0 , u(1) = 0 ,

on the interval [0, 1], where p0 and r0 are positive constants and
f ∈ C4[0, 1]. Using equally spaced points

xi = ih , i = 0, 1, . . . , n , with h = 1/n, n ≥ 2 ,

and the standard piecewise linear finite element basis functions
(hat functions) ϕi, i = 1, 2, . . . , n − 1, show that the finite ele-
ment equations for ui = uh(xi) become

−p0(ui−1 −2ui+ui+1)/h2 +r0(ui−1 +4ui+ui+1)/6 =
1
h
〈f, ϕi〉

for i = 1, 2, . . . , n − 1, with u0 = 0 and un = 0. By expanding
in Taylor series, show that

1
h
〈f, ϕi〉 = f(xi) + 1

12h
2f ′′(xi) + O(h4) .

Interpreting this set of difference equations as a finite difference
approximation to the boundary value problem, as in Chapter
13, show that the corresponding truncation error Ti satisfies

Ti = 1
12h

2r0u
′′(xi) + O(h4) , i = 1, . . . , n − 1 ,

and use the method of Exercise 13.2 to show that

max
0≤i≤n

|u(xi) − uh(xi)| ≤ Mh2 ,

where M is a positive constant.
14.6 In the notation of Exercise 5 suppose that all the integrals in-

volved in the calculation are approximated by the trapezium
rule. Show that the system of equations becomes identical
to that obtained from the central difference approximation in
Chapter 13, and deduce that

max
0≤i≤n

|u(xi) − uh(xi)| ≤ Mh2 ,

where M is a positive constant.
14.7 Consider the differential equation

− (p(x)u′)′ + r(x)u = f(x) , a < x < b ,

with p, r and f as at the beginning of the chapter, subject to
the boundary conditions

−p(a)u′(a) + αu(a) = A , p(b)u′(b) + βu(b) = B ,
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where α and β are positive real numbers, and A and B are
real numbers. Show that the weak formulation of the boundary
value problem is

find u ∈ H1(a, b) such that A(u, v) = $(v) for all v ∈ H1(a, b) ,

where

A(u, v) =
∫ b

a

[p(x)u′(x)v′(x) + r(x)u(x)v(x)]dx

+ αu(a)v(a) + βu(b)v(b) ,

and

$(v) = 〈f, v〉 + Av(a) + Bv(b) .

Construct a finite element approximation of the boundary value
problem based on this weak formulation using piecewise linear
finite element basis functions on the subdivision

a = x0 < x1 < · · · < xn−1 < xn = b

of the interval [a, b]. Show that the finite element method gives
rise to a set of n + 1 simultaneous linear equations with n + 1
unknowns ui = uh(xi), i = 0, 1, . . . , n. Show that this linear
system has a unique solution.

Comment on the structure of the matrix M ∈ R
(n+1)×(n+1)

of the linear system: (a) Is M symmetric? (b) Is M positive
definite? (c) Is M tridiagonal?

14.8 Given that α is a nonnegative real number, consider the differ-
ential equation

−u′′ + u = f(x) for x ∈ (0, 1) ,

subject to the boundary conditions

u(0) = 0 , αu(1) + u′(1) = 0 .

State the weak formulation of the problem. Using continu-
ous piecewise linear basis functions on a uniform subdivision of
[0, 1] into elements of size h = 1/n, n ≥ 2, write down the fi-
nite element approximation to this problem and show that this
has a unique solution uh. Expand uh in terms of the standard
piecewise linear finite element basis functions (hat functions) ϕi,
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i = 1, 2, . . . , n, by writing

uh(x) =
n∑
i=1

Uiϕi(x)

to obtain a system of linear equations for the vector of unknowns
(U1, . . . , Un)T.

Suppose that α = 0, f(x) ≡ 1 and h = 1/3. Solve the result-
ing system of linear equations and compare the corresponding
numerical solution uh(x) with the exact solution u(x) of the
boundary value problem.

14.9 Consider the differential equation

−(p(x)u′)′ + r(x)u = f(x) , x ∈ (0, 1) ,

subject to the boundary conditions u(0) = 0, u(1) = 0, where
p(x) ≥ c0 > 0, r(x) ≥ 0 for all x in the closed interval [0, 1], with
p ∈ C1[0, 1], r ∈ C[0, 1] and f ∈ L2(0, 1). Given that uh denotes
the continuous piecewise linear finite element approximation to
u on a uniform subdivision of [0, 1] into elements of size h = 1/n,
n ≥ 2, show that

‖u − uh‖H1(0,1) ≤ C1h‖u′′‖L2(0,1) ,

where C1 is a positive constant that you should specify. Show
further that there exists a positive constant C such that

‖u − uh‖H1(0,1) ≤ Ch‖f‖L2(0,1) .

Calculate the right-hand sides in these inequalities in the case
when

p(x) ≡ 1 , r(x) ≡ 0 , f(x) ≡ 1 ,

for x ∈ [0, 1], and h = 10−3.
14.10 Consider the two-point boundary value problem

−u′′ + u = f(x) , x ∈ (0, 1) , u(0) = 0 , u(1) = 0 ,

with f ∈ C2[0, 1]. State the piecewise linear finite element ap-
proximation to this problem on a nonuniform subdivision

0 = x0 < x1 < · · · < xn = 1 , n ≥ 2 ,

with hi = xi − xi−1, assuming that, for a continuous piecewise
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linear function vh, ∫ 1

0

f(x)vh(x)dx

has been approximated by applying the trapezium rule on each
element [xi−1, xi].

Verify that the following a posteriori bound holds for the error
between u and its finite element approximation uh:

‖u − uh‖L2(0,1) ≤ K0

(
n∑
i=1

h4
i ‖R(uh)‖2

L2(xi−1,xi)

)1/2

+ K1 max
1≤i≤n

h2
i

(
max

x∈[xi−1,xi]
|f ′′(x)|2 + 4 max

x∈[xi−1,xi]
|f ′(x)|

)1/2

,

where R(uh) = f(x) − (−(uh)′′(x) + uh(x)) for x ∈ (xi−1, xi),
i = 1, . . . , n, and K0, K1 are constants which you should specify.

How would you use this bound to compute u to within a
specified tolerance TOL?
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An overview of results from real analysis

In this Appendix we gather a number of results from real analysis which
are assumed at various places in the text. Some of these will be familiar
from any course on the subject, and no proofs are given; a small number
may be less familiar, and we give proofs of these for completeness.

Theorem A.1 (The Intermediate Value Theorem) Suppose that f
is a real-valued function, defined and continuous on the closed interval
[a, b] of R. Then, f is a bounded function on the interval [a, b] and, if y
is any number such that

inf
x∈[a,b]

f(x) ≤ y ≤ sup
x∈[a,b]

f(x) ,

then there is a number ξ ∈ [a, b] such that f(ξ) = y. In particular, the
infimum and the supremum of f are achieved, and can be replaced by
minx∈[a,b] and maxx∈[a,b], respectively.

The next result, known as Rolle’s Theorem, was published in an ob-
scure book in 1691 by the French mathematician Michel Rolle (1652–
1719) who invented the notation n

√
x for the nth root of x.

Theorem A.2 (Rolle’s Theorem) Suppose that f is a real-valued
function, defined and continuous on the closed interval [a, b] of R, dif-
ferentiable in the open interval (a, b), and such that f(a) = f(b). Then,
there exists a number ξ ∈ (a, b) such that f ′(ξ) = 0.

It is often important in our applications that the point ξ ∈ (a, b), i.e.,
a < ξ < b. For instance it may happen that f ′(a) = f ′(b) = 0, as well as
f(a) = f(b); Theorem A.2 then states that, in addition to the endpoints

419
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of the interval [a, b], there is also an interior point ξ ∈ (a, b) at which
the derivative vanishes.

Theorem A.3 (The Mean Value Theorem) Suppose that f is a
real-valued function, defined and continuous on the closed interval [a, b]
of R, and f is differentiable in the open interval (a, b). Then, there exists
a number ξ ∈ (a, b) such that

f(b) − f(a) = f ′(ξ) (b − a) .

Theorem A.4 (Taylor’s Theorem) Suppose that n is a nonnegative
integer, and f is a real-valued function, defined and continuous on the
closed interval [a, b] of R, such that the derivatives of f of order up to
and including n are defined and continuous on the closed interval [a, b].
Suppose further that f (n) is differentiable on the open interval (a, b).
Then, for each value of x in [a, b], there exists a number ξ = ξ(x) in the
open interval (a, b) such that

f(x) = f(a) + (x − a)f ′(a) + · · · + (x − a)n

n!
f (n)(a)

+
(x − a)n+1

(n + 1)!
f (n+1)(ξ) .

Theorem A.5 (Taylor’s Theorem with integral remainder) Let
n be a nonnegative integer and suppose that f is a real-valued function,
defined and continuous on the closed interval [a, b] of R, such that the
derivatives of f of order up to and including n are defined and continuous
on [a, b], f (n) is differentiable on the open interval (a, b), and f (n+1) is
integrable on (a, b). Then, for each x ∈ [a, b],

f(x) = f(a) + (x − a)f ′(a) + · · · + (x − a)n

n!
f (n)(a)

+
∫ x

a

(x − t)n

n!
f (n+1)(t)dt .

Proof As this version of the theorem may be rather less familiar we
include a proof.

The theorem is trivially true for n = 0. Suppose that the theorem is
true for some nonnegative integer, say n = k. Then, provided that f (k+1)

is differentiable on (a, b) and f (k+2) is integrable on (a, b), integration
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by parts shows that∫ x

a

(x − t)k+1

(k + 1)!
f (k+2)(t)dt = − (x − a)k+1

(k + 1)!
f (k+1)(a)

−
∫ x

a

− (x − t)k

k!
f (k+1)(t)dt ;

use of the theorem when n = k now shows that it is also true for n = k+1.
The proof by induction is then complete.

Theorem A.6 (The Integral Mean Value Theorem) Suppose that
f is a real-valued function, defined and continuous on a closed interval
[a, b] of R, and let g be a function, defined, nonnegative and integrable
on (a, b). Then, there exists a number ξ ∈ (a, b) such that∫ b

a

f(x)g(x) dx = f(ξ)
∫ b

a

g(x) dx .

Proof Since f is continuous on [a, b], it is bounded on [a, b], say

m ≤ f(x) ≤ M, x ∈ [a, b] .

Then, as g(x) ≥ 0 for all x ∈ (a, b), we have that

mg(x) ≤ f(x)g(x) ≤ Mg(x) , x ∈ (a, b) .

Integrating these inequalities gives

m

∫ b

a

g(x) dx ≤
∫ b

a

f(x)g(x) dx ≤ M

∫ b

a

g(x) dx .

If
∫ b
a
g(x)dx = 0, then the result trivially follows. If, on the other hand,∫ b

a
g(x)dx > 0, then

m ≤
∫ b
a
f(x)g(x) dx∫ b
a
g(x) dx

≤ M.

The existence of the required value of ξ ∈ (a, b) now follows from the
Intermediate Value Theorem.

Theorem A.6 obviously also holds provided that g(x) ≤ 0 on (a, b);
it is only important that g has constant sign on (a, b). Note also that
we do not require that g is continuous, only that it is integrable. For
example, Theorem A.6 will hold if f is a continuous function defined on
[0, 1] and g(x) = x−1/2, x ∈ (0, 1).
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Theorem A.7 (Taylor’s Theorem for several variables) Suppose
that f is a real-valued function of n real variables, n ≥ 1, such that f and
all of its partial derivatives up to and including order k + 1 are defined,
continuous and bounded in a neighbourhood of the point a in R

n. Let
A denote an upper bound on the absolute values of all the derivatives of
order k + 1 in this neighbourhood. Then

f(a + η) = f(a) +
k∑
r=1

Ur(a)
r!

+ Ek ,

where

Ur(a) =
[(

η1
∂

∂x1
+ · · · + ηn

∂

∂xn

)r
f

]
(a) , r = 1, . . . , k ,

and

|Ek| ≤ 1
(k+1)!Ank+1 ‖η‖k+1

∞ .

Proof The proof involves the application of Theorem A.4, Taylor’s The-
orem, to the function of one variable

ϕ(t) = f(a + tη)

to give a series expansion for ϕ(1). Then, the expressions for the deriva-
tives of ϕ in terms of the partial derivatives of f , via the chain rule,
yield the required result; nk+1 is the number of partial derivatives of
order k + 1 for a function of n variables.
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WWW-resources

The book would not be complete without some mention of numerical
analysis software and software repositories on the World Wide Web.

An excellent source of mathematical software is the Netlib Repository
on the website

http://www.netlib.org

A detailed classified list of the available mathematical software libraries
can be viewed by clicking on the Browse button on this webpage. It is
also possible to search the repository for a specific piece of software.

Another useful resource is the website of the ACM Transactions on
Mathematical Software (TOMS) at

http://math.nist.gov/toms/

The site maintains a well-organised repository, including a range of freely
available packages for both numerical and symbolical computations, as
well as a number of helpful links to various software vendors. The latter
include the developers of Maple (a software for symbolical and numerical
computations, scientific visualisation and programming), the makers of
Mathematica (a software system for symbolical, numerical and graphical
computations), the Numerical Algorithms Group (NAG), MathWorks,
Inc., the developers of Matlab (a technical computing environment for
high-performance numerical computation and visualisation), and many
others. Most of the numerical experiments included in the book were
performed by using either Matlab or Maple.

Concerning the history of mathematics, we refer to the Mac Tutor
history of mathematics website at St Andrews University in Scotland:

http://www-history.mcs.st-andrews.ac.uk/history/

A more recent site, dedicated specifically to the history of approximation
theory, resides on

http://www.cs.wisc.edu/˜deboor/HAT/
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A posteriori error analysis
adaptivity, 410
dual problem, 405

A \B, 64
Absolutely continuous function, 295
Adaptive finite element algorithm
refinement criterion, 410
stopping criterion, 410

Agmon’s inequality, 415
Asymptotic convergence, 16
convergence rate, 13, 21

Bε(ξ), 104
Backward Differentiation Formulae,
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Band matrix, 98
Bauer–Fike Theorem, 173, 174
Bernoulli numbers, 214
Bernstein polynomials, 227
Bessel’s inequality, 266
Best approximation
in 2-norm, 256
in ∞-norm, 228

Bidiagonal matrix, 164
Bilinear functional, 388
symmetric, 388

Binet–Cauchy Theorem, 51
Bisection method, 28
Boundary value problems, 361
central difference approximation,

363

derivative boundary condition, 367
eigenvalue problem, 373
error bound, 365, 368
finite element approximation, 391
global error, 364
Maximum Principle, 365, 369, 372
self-adjoint problem, 370
truncation error, 364, 368, 371
weak formulation, 390
weak solution, 390

Brouwer’s Fixed Point Theorem, 4,
125

C[a, b], 225
Ck[a, b], 293
Cn, 62
Cn×n, 64, 145
Cn∗ , 64
Céa’s Lemma, 397
Cauchy sequence, 105
Cauchy–Schwarz inequality, 59, 254
Central difference, 362
Characteristic polynomial, 136, 137
Chebyshev polynomials, 241, 263
Cholesky factorisation, 91
Closed ball, 63
Closed set, 105
Cofactor, 40
Comparison functions, 366, 372
Completeness, 105
Composite integration formulae,

209
Condition number, 58, 70
ill-conditioned matrix, 70
ill-conditioned problem, 68

Consistent linear multistep method,
337

Consistent one-step method, 321
Continuous function, 106
Contraction, 6
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Contraction Mapping Theorem, 7, 110
Convergence
asymptotic, 16
asymptotic rate, 13
linear, 12
of linear multistep method, 340
of one-step method, 322
quadratic, 16, 22, 119
sublinear, 13
superlinear, 13

Cramer’s rule, 41
Cubic splines, 298

Dahlquist’s Theorems
Barrier Theorem, 340
Equivalence Theorem, 340
Second Barrier Theorem, 348

de la Vallée Poussin’s Theorem, 232
det(A), 40
Determinant, 40
Diagonal dominance, 96, 117, 367,

371
Differential equations
boundary value problems, 361, 385
initial value problems, 310

Eigenfunctions, 373
Eigenvalues, 133, 373
characteristic polynomial, 136, 137
definition, 66
Jacobi’s method, 137, 149
QR algorithm, 162
Rayleigh quotient, 170
tridiagonal matrix, 156

Eigenvectors, 136
definition, 66
inverse iteration, 166
Jacobi’s method, 144
orthogonal, 136

Energy norm, 399
Euler’s method, 317, 323
global error, 318
truncation error, 318

Euler–Maclaurin formula, 211

Finite element method, 385
a posteriori error analysis, 402
a priori error analysis, 397
adaptive algorithm, 409
basis functions, 394
Galerkin method, 394
Galerkin principle, 386
interpolant, 399
Rayleigh–Ritz principle, 386
residual, 406
Ritz method, 394
subdivision, 394

Fixed point
definition, 4, 108
simple iteration, 6
simultaneous iteration, 108
stable, 12
unstable, 12

Frobenius norm, 141

Galerkin approximation, 393
Galerkin basis functions, 393
Galerkin finite element method, 394
Galerkin method, 392, 393
Galerkin orthogonality, 397, 405
Galerkin principle, 389
Gauss quadrature, 277
composite, 285
convergence, 283
error estimate, 282
quadrature points, 279
quadrature weights, 279

Gaussian elimination, 44
pivoting, 52

Gerschgorin discs, 145
Gerschgorin similarity transformation,

149
Gerschgorin theorems, 145
Global convergence, 29
Newton’s method, 31, 123

Global error
boundary value problem, 364
Euler’s method, 318
initial value problem, 317

Gram–Schmidt orthogonalisation, 261

Hk+1(a, b), 296
Hat function, 297, 394
Hermite cubic spline, 300
Hermite interpolation, 187, 277
error, 190

Hilbert matrix, 72, 259
Hölder’s inequality, 61
Householder matrix, 150
Householder reflector, 151
Householder’s method, 155

Implicit methods
linear multistep methods, 330
one-step methods, 324
Runge–Kutta methods, 351

Improved Euler method, 328
Infinity norm, 59, 65, 225
best approximation, 228

Initial value problems, 310
linear multistep methods, 329
one-step methods, 317

Inner product, 252, 388
inner product space, 253
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orthogonality, 253
weight function, 255

Integral Mean Value Theorem, 421
Integration, 200
composite Simpson’s rule, 210
composite trapezium rule, 209
Euler–Maclaurin formula, 211
Gauss quadrature, 277
Lobatto rule, 287
midpoint rule, 286
Newton–Cotes quadrature, 201
quadrature points, 202, 279
quadrature weights, 202
Radau rule, 287
Richardson extrapolation, 216
Romberg integration, 217
Simpson’s rule, 203
trapezium rule, 202

Interchanges, 52
interchange matrix, 53

Interlace Theorem, 157
Intermediate Value Theorem, 419
Interpolation, 179, 244, 292
at Chebyshev points, 244
cubic spline, 298
Hermite, 187, 292
Lagrange, 180, 292
linear spline, 293

Interpolation points, 182
Inverse
of a lower triangular matrix, 47
of a matrix, 40

Inverse iteration, 166
Iteration, simple, 2

Jacobi’s method, 149
classical, 140
convergence, 142
eigenvalues, 137
eigenvectors, 144
serial, 143

Jacobian matrix, 113, 346

Kronecker delta, 267

L2
w(a, b), 225
Lagrange interpolation, 180, 201
error, 183

Laguerre polynomials, 290
Least squares solution of linear

equations, 74
Lebesgue integral, 256
Legendre polynomials, 263
Linear convergence, 12
Linear multistep methods, 329
A-stable, 348
absolutely stable, 348

characteristic polynomials, 332
consistency, 337
error constant, 338
explicit, 330
implicit, 330
order of accuracy, 338
region of absolute stability, 348
Root Condition, 332, 335
Simpson’s rule method, 330
truncation error, 337
zero-stability, 331

Lipschitz condition, 7, 11, 109, 318
Lipschitz constant, 109
ln = loge, 5, 315
Lobatto quadrature, 287
Logistic equation, 30
Lower triangular matrix, 46
inverse, 47

LU factorisation
existence, 50
of matrix, 48
with pivoting, 53

M-matrix, 101
Mass matrix, 396
Matrix
band, 98
bidiagonal, 164
condition number, 58, 70
diagonally dominant, 96
Hilbert, 72
lower triangular, 46
M-matrix, 101
monotone, 99
orthogonal, 138
permutation, 53
positive definite, 87, 88, 97
principal submatrix, 50
strictly diagonally dominant, 96
symmetric, 87
tridiagonal, see Tridiagonal

matrix
unit lower triangular, 46
upper triangular, 47

Matrix factorisation
Cholesky, 90
LU, 48
QR, 76, 78, 163

Matrix norm, 58
1-norm, 66
2-norm, 66
∞-norm, 65
Frobenius norm, 141
subordinate norm, 64

Maximum norm, see Infinity norm
Maximum Principle, 365, 369, 372
comparison function, 366, 372
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Mean Value Theorem, 8, 10, 11, 26, 113,
420

Midpoint rule, 286
Minimax approximation, 230
Minkowski’s inequality, 62
Modified Euler method, 328
Monic polynomial, 243
Monotone matrix, 99
tridiagonal, 100

Moore–Penrose generalised inverse, 70,
81

Natural cubic spline, 298
Near-minimax polynomial, 245, 270
Neighbourhood, 105
Newton’s method, 19, 21, 116
convergence, 23, 116
global behaviour, 31, 123
simultaneous equations, 118

Newton–Cotes quadrature, 201
convergence, 208
error estimate, 204
Simpson’s rule, 203
trapezium rule, 202

Norm, 58, 224
1-norm, 59, 66
2-norm, 59, 66, 225, 252, 255
∞-norm, 59, 65, 225
energy norm, 399
Frobenius norm, 141
induced norm, 254
normed linear space, 58, 224
p-norm, 60
Sobolev norm, 387
vector and matrix norm, 58

Normal equations, 76

One-step methods, 317
consistent, 321
convergence, 322
Euler’s method, 317, 323
general form, 317
implicit methods, 324
improved Euler method, 328
modified Euler method, 328
order of accuracy, 323
Runge–Kutta methods, 323, 325
trapezium rule method, 324
truncation error, 317

Open ball, 63
Open set, 104
Operation count, 92
Order of accuracy
linear multistep methods, 338
one-step methods, 323

Orthogonal, inner product space, 252
Orthogonal eigenvectors, 136

Orthogonal matrix, 138
Orthogonal polynomials, 259, 260, 277
construction, 260
zeros, 269, 279

Orthogonal transformation
eigenvalues, 137
invariance of sum of squares, 140
plane rotation, 138

Orthonormal polynomials, 265
Oscillation Theorem, 232, 233, 243
critical point, 233

Pn, 180
Permutation matrices, 53
Piecewise polynomials, 292
Pivoting, 52, 92, 95
Plane rotations, 138, 163
Poincaré–Friedrichs inequality, 414
Positive definite matrix, 87, 97
properties, 88

Principal submatrix, 50

QR algorithm, 162
shift, 164

QR factorisation, 76, 78, 163
Quadratic convergence, 16, 22, 119
Quadrature, see Integration

Rm×n, Rn×n, 40
R
n×n
sym , 87

Rn∗ , 64
Radau quadrature, 287
Rayleigh quotient, 170
Rayleigh–Ritz principle, 388
Relaxation, 19
convergence, 20, 117
simultaneous equations, 116

Richardson extrapolation, 216
Ritz approximation, 393
Ritz method, 392, 393
Ritz projector, 398
Rolle’s Theorem, 184, 191, 419
Romberg integration, 217
Row operations, 46
Runge phenomenon, 208
Runge–Kutta methods, 323, 325
algebraically stable, 354
Butcher tableau, 352
classical fourth order, 328
diagonally implicit (DIRK), 353
implicit, 349
improved Euler method, 328
modified Euler method, 328

Secant method, 25
convergence, 26

Self-adjoint problem, 370



Index 433

Set of measure zero, 295
Shift, QR algorithm, 165
Simple iteration, 2
convergence, 11
divergence, 15
global behaviour, 29

Simpson’s rule, 203
composite, 210
error estimate, 205

Simultaneous iteration, 106
convergence, 110, 113

Simultaneous nonlinear equations, 104
Newton’s method, 118

Simultaneous relaxation, 116
Singular value
decomposition, 82
definition, 67

Sobolev norm, 387
Sobolev space, 296, 387
Solution of linear equations, 44, 55
computational work, 56
least squares, 74
sensitivity, 71

Spline, 292, 394
cubic, 298
end conditions, 298
Hermite cubic, 300
error bound, 301

interpolating cubic, 298
knot, 292
linear, 293
basis functions, 297
error bound, 293
optimum property, 296

natural cubic, 298
construction, 299
end conditions, 298
optimum property, 300

Stability polynomial, 347
Stable fixed point, 12
Stiff linear ODE system, 345
Stiffness matrix, 396
Strictly diagonally dominant matrix,

96
Sturm sequence, 158
Sturm–Liouville problem, 373

Subdivision, 394
Sublinear convergence, 13
Subordinate matrix norm, 64
Superlinear convergence, 13
Support, 394
Symmetric bilinear functional, 388
Symmetric matrix, 87

Taylor’s Theorem, 420
several variables, 422
with integral remainder, 420

Thomas algorithm, 95, 363
Trace, 136
Trapezium rule, 202
composite, 209

Tridiagonal matrix, 93, 363, 367, 371,
373, 395

eigenvalues, 156
factorisation, 94
monotone, 100
reduction of real symmetric matrix,

150
Truncation error
Euler’s method, 318
linear multistep method, 337
one-step method, 317

Unit lower triangular matrix, 46
Upper triangular matrix, 47

Variational problem, 385
Vector norm, 58
1-norm, 59
2-norm, 59
∞-norm, 59
p-norm, 60

Weak formulation, 390
Weak solution, 390
Weierstrass Theorem, 227, 283
Weight function, 255, 260, 277

Young’s inequality, 61

Zero-stability, 331
Root Condition, 335


